目录

MindSpore标志

PyPI - Python Version PyPI Downloads DockerHub LICENSE PRs Welcome

View English

MindSpore介绍

MindSpore是一种适用于端边云场景的新型开源深度学习训练/推理框架。 MindSpore提供了友好的设计和高效的执行,旨在提升数据科学家和算法工程师的开发体验,并为Ascend AI处理器提供原生支持,以及软硬件协同优化。

同时,MindSpore作为全球AI开源社区,致力于进一步开发和丰富AI软硬件应用生态。

MindSpore Architecture

欲了解更多详情,请查看我们的总体架构

自动微分

当前主流深度学习框架中有两种自动微分技术:

  • 操作符重载法: 通过操作符重载对编程语言中的基本操作语义进行重定义,封装其微分规则。 在程序运行时记录算子过载正向执行时网络的运行轨迹,对动态生成的数据流图应用链式法则,实现自动微分。
  • 代码变换法: 该技术是从功能编程框架演进而来,以即时编译(Just-in-time Compilation,JIT)的形式对中间表达式(程序在编译过程中的表达式)进行自动差分转换,支持复杂的控制流场景、高阶函数和闭包。

PyTorch采用的是操作符重载法。相较于代码变换法,操作符重载法是在运行时生成微分计算图的, 无需考虑函数调用与控制流等情况, 开发更为简单。 但该方法不能在编译时刻做微分图的优化, 控制流也需要根据运行时的信息来展开, 很难实现性能的极限优化。

MindSpore则采用的是代码变换法。一方面,它支持自动控制流的自动微分,因此像PyTorch这样的模型构建非常方便。另一方面,MindSpore可以对神经网络进行静态编译优化,以获得更好的性能。

Automatic Differentiation

MindSpore自动微分的实现可以理解为程序本身的符号微分。MindSpore IR是一个函数中间表达式,它与基础代数中的复合函数具有直观的对应关系。复合函数的公式由任意可推导的基础函数组成。MindSpore IR中的每个原语操作都可以对应基础代数中的基本功能,从而可以建立更复杂的流控制。

自动并行

MindSpore自动并行的目的是构建数据并行、模型并行和混合并行相结合的训练方法。该方法能够自动选择开销最小的模型切分策略,实现自动分布并行训练。

Automatic Parallel

目前MindSpore采用的是算子切分的细粒度并行策略,即图中的每个算子被切分为一个集群,完成并行操作。在此期间的切分策略可能非常复杂,但是作为一名Python开发者,您无需关注底层实现,只要顶层API计算是有效的即可。

安装

pip方式安装

MindSpore提供跨多个后端的构建选项:

硬件平台 操作系统 状态
Ascend Linux-x86 ✔️
Linux-aarch64 ✔️
GPU CUDA 11.6 Linux-x86 ✔️
CPU Linux-x86 ✔️
Linux-aarch64 ✔️
Windows-x86 ✔️
MacOS-x86 ✔️
MacOS-aarch64 ✔️

使用pip命令安装,以CPULinux-x86构建版本为例:

  1. 请从MindSpore下载页面下载并安装whl包。

    pip install mindspore==2.7.1 -i https://repo.mindspore.cn/pypi/simple --trusted-host repo.mindspore.cn --extra-index-url https://repo.huaweicloud.com/repository/pypi/simple
  2. 执行以下命令,验证安装结果。

    python -c "import mindspore;mindspore.set_device(device_target='CPU');mindspore.run_check()"

使用pip方式,在不同的环境安装MindSpore,可参考以下文档。

源码编译方式安装

使用源码编译方式,在不同的环境安装MindSpore,可参考以下文档。

Docker镜像

MindSpore的Docker镜像托管在Huawei SWR上。 使用Docker方式,在不同的环境安装MindSpore,可参考以下文档。

快速入门

参考快速入门实现图片分类。

文档

有关安装指南、教程和API的更多详细信息,请参阅用户文档

社区

治理

查看MindSpore如何进行开放治理

交流

贡献

欢迎参与贡献。更多详情,请参阅我们的贡献者Wiki

版本维护策略

MindSpore的版本有以下几种维护阶段:

状态 持续时间 说明
Planning 1 - 3 months 特性规划。
Development 3 months 特性开发。
Maintained 6 - 12 months 允许所有问题修复的合入,并发布版本。
Unmaintained 0 - 3 months 允许所有问题修复的合入,无专人维护,不再发布版本。
End Of Life (EOL) N/A 不再接受修改合入该版本。

现有版本维护状态

版本名 当前状态 上线时间 后续状态 EOL 日期
r2.7 Maintained 2025-08-08 Unmaintained
2026-08-08 estimated
2026-08-08
r2.6 Maintained 2025-05-19 Unmaintained
2026-05-19 estimated
2026-05-19
r2.5 Maintained 2025-02-08 Unmaintained
2026-02-08 estimated
2026-02-08
r2.4 End Of Life 2024-10-30 2025-10-30
r2.3 End Of Life 2024-07-15 2025-07-15
r2.2 End Of Life 2023-10-18 2024-10-18
r2.1 End Of Life 2023-07-29 2024-07-29
r2.0 End Of Life 2023-06-15 2024-06-15
r1.10 End Of Life 2023-02-02 2024-02-02
r1.9 End Of Life 2022-10-26 2023-10-26
r1.8 End Of Life 2022-07-29 2023-07-29
r1.7 End Of Life 2022-04-29 2023-04-29
r1.6 End Of Life 2022-01-29 2023-01-29
r1.5 End Of Life 2021-10-15 2022-10-15
r1.4 End Of Life 2021-08-15 2022-08-15
r1.3 End Of Life 2021-07-15 2022-07-15
r1.2 End Of Life 2021-04-15 2022-04-29
r1.1 End Of Life 2020-12-31 2021-09-30
r1.0 End Of Life 2020-09-24 2021-07-30
r0.7 End Of Life 2020-08-31 2021-02-28
r0.6 End Of Life 2020-07-31 2020-12-30
r0.5 End Of Life 2020-06-30 2021-06-30
r0.3 End Of Life 2020-05-31 2020-09-30
r0.2 End Of Life 2020-04-30 2020-08-31
r0.1 End Of Life 2020-03-28 2020-06-30

版本说明

版本说明请参阅RELEASE

许可证

Apache License 2.0

关于
6.3 GB
邀请码