# Top two lines are not necessary when do outer import
import sys
sys.path.append("../")
from algorithm_praise_detector.predictor import Predictor
model_path = "/workspace/tmp/package_model_praise"
model = Predictor(model_path)
# predict one piece of sentence
labels, probs, keywords = model.predict("你真的好棒啊!")
print(labels, probs)
print(keywords)
# predict list of sentences
input_list = ["你真的好棒!"]*3000
labels, probs, _ = model.predict(input_list)
assert len(input_list) == len(labels) == len(probs)
Interface version
# Top two lines are not necessary when do outer import
import sys
sys.path.append("../")
from algorithm_praise_detector import model
model_path = "./model_zoo/package_model_praise"
model = model(model_path)
input_text = [
{
"text":"这句话呢,其我我靠实都是很棒告诉你很棒规则,他就看你能不能看到他这个给你的规定了。",
"begin_time":1326750,
"end_time":1332165
}
]
print(model(input_text))
# """[
# {
# 'keyword_list':
# [
# {
# 'keyword': '很棒',
# 'word_count': 2
# }
# ],
# 'sentence': '这句话呢,其我操我靠实都是很棒告诉你很棒规则,
# 他就看你能不能看到他这个给你的规定了。',
# 'begin_time': 1326750,
# 'end_time': 1332165}
# ]
# """
Algorithm praise detector
用来检测教师鼓励行为的模型,模型存放在
./model_zoo
:package_model_praise
Efficiency Performace
test environment
Tesla P4, ubuntu 18.04, 4-cores CPU, 16G memory, GPU 7611MB(Not use), driver version= 418.67
Duration: 17 hours
Performace
Average Memeory Usage : 5%
Average CPU Usage : 35%
speed
Quick Start
Train Model With Demo Dataset
USAGE