import jittor as jt
from jittor import Module
from jittor import nn
import numpy as np
class Model(Module):
def __init__(self):
self.layer1 = nn.Linear(1, 10)
self.relu = nn.Relu()
self.layer2 = nn.Linear(10, 1)
def execute (self,x) :
x = self.layer1(x)
x = self.relu(x)
x = self.layer2(x)
return x
def get_data(n): # generate random data for training test.
for i in range(n):
x = np.random.rand(batch_size, 1)
y = x*x
yield jt.float32(x), jt.float32(y)
learning_rate = 0.1
batch_size = 50
n = 1000
model = Model()
optim = nn.SGD(model.parameters(), learning_rate)
for i,(x,y) in enumerate(get_data(n)):
pred_y = model(x)
dy = pred_y - y
loss = dy * dy
loss_mean = loss.mean()
optim.step(loss_mean)
print(f"step {i}, loss = {loss_mean.data.sum()}")
Windows user please prepare Python>=3.8, install instructions are list below(conda needs extra instructions):
# check your python version(>=3.8)
python --version
python -m pip install jittor
# if conda is used
conda install pywin32
Windows 下,jittor会自动检测显卡并安装对应的 CUDA, 请确保您的NVIDIA驱动支持CUDA 10.2 以上,您还可以使用如下命令手动为Jittor安装CUDA:
python -m jittor_utils.install_cuda
Docker 安装
我们提供了Docker安装方式,免去您配置环境,Docker安装方法如下:
# CPU only(Linux)
docker run -it --network host jittor/jittor
# CPU and CUDA(Linux)
docker run -it --network host --gpus all jittor/jittor-cuda
# CPU only(Mac and Windows)
docker run -it -p 8888:8888 jittor/jittor
@article{hu2020jittor,
title={Jittor: a novel deep learning framework with meta-operators and unified graph execution},
author={Hu, Shi-Min and Liang, Dun and Yang, Guo-Ye and Yang, Guo-Wei and Zhou, Wen-Yang},
journal={Science China Information Sciences},
volume={63},
number={222103},
pages={1--21},
year={2020}
}
Jittor: 即时编译深度学习框架
快速开始 | 安装 | 教程 | English
Jittor 是一个基于即时编译和元算子的高性能深度学习框架,整个框架在即时编译的同时,还集成了强大的Op编译器和调优器,为您的模型生成定制化的高性能代码。Jittor还包含了丰富的高性能模型库,涵盖范围包括:图像识别,检测,分割,生成,可微渲染,几何学习,强化学习等等。
Jittor前端语言为Python。前端使用了模块化和动态图执行的设计,这是目前最主流的深度学习框架接口设计。后端则使用高性能语言编写,如CUDA,C++。
相关链接:
下面的代码演示了如何一步一步使用Python代码,从头对一个双层神经网络建模。
大纲
快速开始
我们提供了一些jupyter notebooks来帮助您快速入门Jittor。
安装
Jittor框架对环境要求如下:
(Ubuntu, CentOS, Arch,
UOS, KylinOS, …)
x86_64
ARM
loongson
or AMD ROCm >= 4.0
or Hygon DCU DTK >= 22.04
(>= 10.14 Mojave)
Apple Silicon
Jittor 提供了三种安装方法:pip、docker和手动安装:
Pip 安装
下面将展示Ubuntu的安装命令,如果您在使用其他Linux操作系统(如CentOS), 请安装好依赖(Python>=3.7, g++>=5.4)或者使用docker安装, 如果您已经装好编译器和对应版本的Python,我们强烈推荐您使用这种方法 (如果无法访问github, 可以通过Jittor主页下载):
如果测试运行通过,恭喜你已经安装完成. jittor会自动在路径中寻找合适的编译器, 如果您希望手动指定编译器, 请使用环境变量
cc_path
和nvcc_path
(可选).macOS 安装
macOS 请使用 homebrew 安装额外的依赖。
之后您可以通过 pip 安装 jittor,并测试是否可以成功运行。
目前在 macOS 中,jittor 只支持 CPU 计算。
Windows安装
Windows 请准备好Python>=3.8,安装方法如下(conda安装需要额外命令):
Windows user please prepare Python>=3.8, install instructions are list below(conda needs extra instructions):
Windows 下,jittor会自动检测显卡并安装对应的 CUDA, 请确保您的NVIDIA驱动支持CUDA 10.2 以上,您还可以使用如下命令手动为Jittor安装CUDA:
Docker 安装
我们提供了Docker安装方式,免去您配置环境,Docker安装方法如下:
关于Docker安装的详细教程,可以参考Windows/Mac/Linux通过Docker安装计图
手动安装
我们将逐步演示如何在Ubuntu 16.04中安装Jittor,其他Linux发行版可能可以使用类似的命令。
步骤一:选择您的后端编译器
步骤二:安装Python和python-dev
Jittor需要python的版本>=3.7。
步骤三:运行Jittor
整个框架是即时编译的。 让我们通过pip安装jittor
如果通过了测试,那么您的Jittor已经准备就绪。
可选步骤四:启用CUDA
在Jittor中使用CUDA非常简单,只需设置环境值
nvcc_path
如果测试通过,则可以通过设置
use_cuda
标识符在Jittor中启用CUDA。可选步骤五:测试训练Resnet18
要检查Jittor的完整性,您可以运行Resnet18训练测试。需要注意的是,这个测试需要6G显存。
如果这些测试失败,请为我们报告错误,我们十分欢迎您为Jittor做出贡献^ _ ^
教程
在教程部分,我们将简要解释Jittor的基本概念。
要使用Jittor训练模型,您需要了解两个主要概念:
数据类型
首先,让我们开始使用Var。Var是jittor的基本数据类型,为了运算更加高效Jittor中的计算过程是异步的。 如果要访问数据,可以使用
Var.data
进行同步数据访问。此外我们可以给变量起一个名字。
数据运算
Jittor的算子与numpy类似。 让我们尝试一些运算, 我们通过Op
jt.float32
创建Vara
和b
,并将它们相加。 输出这些变量相关信息,可以看出它们具有相同的形状和类型。除此之外,我们使用的所有算子
jt.xxx(Var,...)
都具有别名Var.xxx(...)
。 例如:如果您想知道Jittor支持的所有运算,可以运行
help(jt.ops)
。 您在jt.ops.xxx
中找到的所有运算都可以通过别名jt.xxx
。更多教程
如果您想进一步了解Jittor,请查看以下notebooks:
这些notebooks可以通过python3.7 -m jittor.notebook在您自己的计算机中运行。
贡献
Jittor还很年轻。 它可能存在错误和问题。 请在我们的错误跟踪系统中报告它们。 我们欢迎您为Jittor做出贡献。 此外,如果您对Jittor有任何想法,请告诉我们。
您可以用以下方式帮助Jittor:
联系我们
官方主页: http://cg.cs.tsinghua.edu.cn/jittor/
电子邮件:jittor@qq.com
提出issue:https://github.com/Jittor/jittor/issues
QQ 群:761222083
团队
Jittor目前由清华大学计算机图形学组维护。 如果您也对Jittor感兴趣并希望对其进行改进,请加入我们!
引用
版权声明
如LICENSE.txt文件中所示,Jittor使用Apache 2.0版权协议。