287 lines
10 KiB
Python
287 lines
10 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: liaoxingyu
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data import Dataset
|
|
from collections import defaultdict
|
|
from torch.utils.data.sampler import Sampler
|
|
import copy
|
|
import numpy as np
|
|
import random
|
|
import torch
|
|
import torchvision.transforms as T
|
|
import os.path as osp
|
|
from PIL import Image
|
|
import glob
|
|
import re
|
|
|
|
|
|
class RandomIdentitySampler(Sampler):
|
|
"""
|
|
Randomly sample N identities, then for each identity,
|
|
randomly sample K instances, therefore batch size is N*K.
|
|
Args:
|
|
- data_source (list): list of (img_path, pid, camid).
|
|
- num_instances (int): number of instances per identity in a batch.
|
|
- batch_size (int): number of examples in a batch.
|
|
"""
|
|
|
|
def __init__(self, data_source, batch_size, num_instances):
|
|
self.data_source = data_source
|
|
self.batch_size = batch_size
|
|
self.num_instances = num_instances
|
|
self.num_pids_per_batch = self.batch_size // self.num_instances
|
|
self.index_dic = defaultdict(list)
|
|
for index, (_, pid, _) in enumerate(self.data_source):
|
|
self.index_dic[pid].append(index)
|
|
self.pids = list(self.index_dic.keys())
|
|
|
|
# estimate number of examples in an epoch
|
|
self.length = 0
|
|
for pid in self.pids:
|
|
idxs = self.index_dic[pid]
|
|
num = len(idxs)
|
|
if num < self.num_instances:
|
|
num = self.num_instances
|
|
self.length += num - num % self.num_instances
|
|
|
|
def __iter__(self):
|
|
batch_idxs_dict = defaultdict(list)
|
|
|
|
for pid in self.pids:
|
|
idxs = copy.deepcopy(self.index_dic[pid])
|
|
if len(idxs) < self.num_instances:
|
|
idxs = np.random.choice(idxs, size=self.num_instances, replace=True)
|
|
random.shuffle(idxs)
|
|
batch_idxs = []
|
|
for idx in idxs:
|
|
batch_idxs.append(idx)
|
|
if len(batch_idxs) == self.num_instances:
|
|
batch_idxs_dict[pid].append(batch_idxs)
|
|
batch_idxs = []
|
|
|
|
avai_pids = copy.deepcopy(self.pids)
|
|
final_idxs = []
|
|
|
|
while len(avai_pids) >= self.num_pids_per_batch:
|
|
selected_pids = random.sample(avai_pids, self.num_pids_per_batch)
|
|
for pid in selected_pids:
|
|
batch_idxs = batch_idxs_dict[pid].pop(0)
|
|
final_idxs.extend(batch_idxs)
|
|
if len(batch_idxs_dict[pid]) == 0:
|
|
avai_pids.remove(pid)
|
|
|
|
self.length = len(final_idxs)
|
|
return iter(final_idxs)
|
|
|
|
def __len__(self):
|
|
return self.length
|
|
|
|
|
|
|
|
class BaseDataset(object):
|
|
"""
|
|
Base class of reid dataset
|
|
"""
|
|
|
|
def get_imagedata_info(self, data):
|
|
pids, cams = [], []
|
|
for _, pid, camid in data:
|
|
pids += [pid]
|
|
cams += [camid]
|
|
pids = set(pids)
|
|
cams = set(cams)
|
|
num_pids = len(pids)
|
|
num_cams = len(cams)
|
|
num_imgs = len(data)
|
|
return num_pids, num_imgs, num_cams
|
|
|
|
def get_videodata_info(self, data, return_tracklet_stats=False):
|
|
pids, cams, tracklet_stats = [], [], []
|
|
for img_paths, pid, camid in data:
|
|
pids += [pid]
|
|
cams += [camid]
|
|
tracklet_stats += [len(img_paths)]
|
|
pids = set(pids)
|
|
cams = set(cams)
|
|
num_pids = len(pids)
|
|
num_cams = len(cams)
|
|
num_tracklets = len(data)
|
|
if return_tracklet_stats:
|
|
return num_pids, num_tracklets, num_cams, tracklet_stats
|
|
return num_pids, num_tracklets, num_cams
|
|
|
|
def print_dataset_statistics(self):
|
|
raise NotImplementedError
|
|
|
|
|
|
class BaseImageDataset(BaseDataset):
|
|
"""
|
|
Base class of image reid dataset
|
|
"""
|
|
|
|
def print_dataset_statistics(self, train, query, gallery):
|
|
num_train_pids, num_train_imgs, num_train_cams = self.get_imagedata_info(train)
|
|
num_query_pids, num_query_imgs, num_query_cams = self.get_imagedata_info(query)
|
|
num_gallery_pids, num_gallery_imgs, num_gallery_cams = self.get_imagedata_info(gallery)
|
|
|
|
print("Dataset statistics:")
|
|
print(" ----------------------------------------")
|
|
print(" subset | # ids | # images | # cameras")
|
|
print(" ----------------------------------------")
|
|
print(" train | {:5d} | {:8d} | {:9d}".format(num_train_pids, num_train_imgs, num_train_cams))
|
|
print(" query | {:5d} | {:8d} | {:9d}".format(num_query_pids, num_query_imgs, num_query_cams))
|
|
print(" gallery | {:5d} | {:8d} | {:9d}".format(num_gallery_pids, num_gallery_imgs, num_gallery_cams))
|
|
print(" ----------------------------------------")
|
|
|
|
def read_image(img_path):
|
|
"""Keep reading image until succeed.
|
|
This can avoid IOError incurred by heavy IO process."""
|
|
got_img = False
|
|
if not osp.exists(img_path):
|
|
raise IOError("{} does not exist".format(img_path))
|
|
while not got_img:
|
|
try:
|
|
img = Image.open(img_path).convert('RGB')
|
|
got_img = True
|
|
except IOError:
|
|
print("IOError incurred when reading '{}'. Will redo. Don't worry. Just chill.".format(img_path))
|
|
pass
|
|
return img
|
|
class ImageDataset(Dataset):
|
|
"""Image Person ReID Dataset"""
|
|
|
|
def __init__(self, dataset, transform=None):
|
|
self.dataset = dataset
|
|
self.transform = transform
|
|
|
|
def __len__(self):
|
|
return len(self.dataset)
|
|
|
|
def __getitem__(self, index):
|
|
img_path, pid, camid = self.dataset[index]
|
|
img = read_image(img_path)
|
|
|
|
if self.transform is not None:
|
|
img = self.transform(img)
|
|
|
|
return img, pid, camid, img_path
|
|
|
|
class Market1501(BaseImageDataset):
|
|
"""
|
|
Market1501
|
|
Reference:
|
|
Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015.
|
|
URL: http://www.liangzheng.org/Project/project_reid.html
|
|
|
|
Dataset statistics:
|
|
# identities: 1501 (+1 for background)
|
|
# images: 12936 (train) + 3368 (query) + 15913 (gallery)
|
|
"""
|
|
dataset_dir = 'market1501'
|
|
|
|
def __init__(self, root='/home/haoluo/data', verbose=True, **kwargs):
|
|
super(Market1501, self).__init__()
|
|
self.dataset_dir = osp.join(root, self.dataset_dir)
|
|
self.train_dir = osp.join(self.dataset_dir, 'bounding_box_train')
|
|
self.query_dir = osp.join(self.dataset_dir, 'query')
|
|
self.gallery_dir = osp.join(self.dataset_dir, 'bounding_box_test')
|
|
|
|
self._check_before_run()
|
|
|
|
train = self._process_dir(self.train_dir, relabel=True)
|
|
query = self._process_dir(self.query_dir, relabel=False)
|
|
gallery = self._process_dir(self.gallery_dir, relabel=False)
|
|
|
|
if verbose:
|
|
print("=> Market1501 loaded")
|
|
self.print_dataset_statistics(train, query, gallery)
|
|
|
|
self.train = train
|
|
self.query = query
|
|
self.gallery = gallery
|
|
|
|
self.num_train_pids, self.num_train_imgs, self.num_train_cams = self.get_imagedata_info(self.train)
|
|
self.num_query_pids, self.num_query_imgs, self.num_query_cams = self.get_imagedata_info(self.query)
|
|
self.num_gallery_pids, self.num_gallery_imgs, self.num_gallery_cams = self.get_imagedata_info(self.gallery)
|
|
|
|
def _check_before_run(self):
|
|
"""Check if all files are available before going deeper"""
|
|
if not osp.exists(self.dataset_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.dataset_dir))
|
|
if not osp.exists(self.train_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.train_dir))
|
|
if not osp.exists(self.query_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.query_dir))
|
|
if not osp.exists(self.gallery_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.gallery_dir))
|
|
|
|
def _process_dir(self, dir_path, relabel=False):
|
|
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
|
|
pattern = re.compile(r'([-\d]+)_c(\d)')
|
|
|
|
pid_container = set()
|
|
for img_path in img_paths:
|
|
pid, _ = map(int, pattern.search(img_path).groups())
|
|
if pid == -1: continue # junk images are just ignored
|
|
pid_container.add(pid)
|
|
pid2label = {pid: label for label, pid in enumerate(pid_container)}
|
|
|
|
dataset = []
|
|
for img_path in img_paths:
|
|
pid, camid = map(int, pattern.search(img_path).groups())
|
|
if pid == -1: continue # junk images are just ignored
|
|
assert 0 <= pid <= 1501 # pid == 0 means background
|
|
assert 1 <= camid <= 6
|
|
camid -= 1 # index starts from 0
|
|
if relabel: pid = pid2label[pid]
|
|
dataset.append((img_path, pid, camid))
|
|
|
|
return dataset
|
|
|
|
__factory = {
|
|
'market1501': Market1501,
|
|
}
|
|
def train_collate_fn(batch):
|
|
imgs, pids, _, _, = zip(*batch)
|
|
pids = torch.tensor(pids, dtype=torch.int64)
|
|
return torch.stack(imgs, dim=0), pids
|
|
def val_collate_fn(batch):
|
|
imgs, pids, camids, _ = zip(*batch)
|
|
# return torch.stack(imgs, dim=0), pids, camids
|
|
return imgs, pids, camids
|
|
def init_dataset(name, *args, **kwargs):
|
|
if name not in __factory.keys():
|
|
raise KeyError("Unknown datasets: {}".format(name))
|
|
return __factory[name](*args, **kwargs)
|
|
|
|
|
|
normalize_transform = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
transform = T.Compose([
|
|
T.Resize([256, 128]),
|
|
# T.ToTensor(),
|
|
# normalize_transform
|
|
])
|
|
|
|
def make_val_data_loader(cfg):
|
|
val_transforms = transform
|
|
num_workers = cfg.DATALOADER.NUM_WORKERS
|
|
if len(cfg.DATASETS.NAMES) == 1:
|
|
dataset = init_dataset(cfg.DATASETS.NAMES, root=cfg.DATASETS.ROOT_DIR)
|
|
else:
|
|
# TODO: add multi dataset to train
|
|
dataset = init_dataset(cfg.DATASETS.NAMES, root=cfg.DATASETS.ROOT_DIR)
|
|
|
|
num_classes = dataset.num_train_pids
|
|
|
|
|
|
val_set = ImageDataset(dataset.query + dataset.gallery, val_transforms)
|
|
val_loader = DataLoader(
|
|
val_set, batch_size=cfg.TEST.IMS_PER_BATCH, shuffle=False, num_workers=num_workers,
|
|
collate_fn=val_collate_fn
|
|
)
|
|
return val_loader,len(dataset.query), num_classes
|