mdz/pytorch/spynet
guyiyun 3231f3e19f 🔧 refactor: update submodules 2025-06-25 09:34:30 +08:00
..
1_scripts 🎉 feat: initialize modelzoo_v3.7.1 2024-12-31 15:13:58 +08:00
2_compile 🎉 feat: initialize modelzoo_v3.7.1 2024-12-31 15:13:58 +08:00
3_deploy 🔧 refactor: update submodules 2025-06-25 09:34:30 +08:00
weights 🎉 feat: initialize modelzoo_v3.7.1 2024-12-31 15:13:58 +08:00
download.ps1 🔧 refactor: update the format in download scripts 2025-06-25 09:29:04 +08:00
download.sh 🔧 refactor: update the format in download scripts 2025-06-25 09:29:04 +08:00
readme.md 📜 docs: update readme.md 2025-04-18 13:56:53 +08:00

readme.md

spynet

version author
metrics speed
FPGA_ops
模型清单
OS

下载

一键下载开发流程中所需的各种文件,包括编译使用的量化校准集、运行时工程的依赖库,以及输入输出文件。

💡 推荐使用linux版下载脚本其wget包含断网自动重连功能不会出现下载文件遗漏情况。

windows

📌 第一次使用请在C盘根目录下新建icraft_auth.txt,保存下载站账号密码,以换行符分隔

需要事先下载windows版本wget

(若点击以下链接后未直接下载,请选择 1.20.3 版本下的对应系统链接进行下载)

x86系统wget下载 x64系统wget下载

使用时需要将wget.exe的路径作为命令行参数传入注意不是exe的父文件夹目录而是包含wget.exe的完整绝对路径

不下载Deps./download.ps1 "PATH_TO_WGET_EXE"

如果您是第一次使用我们的模型库,请下载包括工程依赖库的所有文件:./download.ps1 "PATH_TO_WGET_EXE" -d

💡 下载过程中可能因网络问题出现中断情况,需 自行重新运行 下载脚本。

linux

📌 第一次使用,请在/usr根目录下新建icraft_auth.txt,保存下载站账号密码,以换行符分隔

为确保文件格式正确,请在运行脚本前安装格式转换工具dos2unix,并执行格式转换命令:

sudo apt-get install dos2unix
dos2unix /usr/icraft_auth.txt
dos2unix ./download.sh

如果您是第一次使用我们的模型库,请下载包括工程依赖库的所有文件:./download.sh -d

如果之前已经在使用别的模型时下载过Deps依赖库可以直接将其中的thirdparty部分复制到路径3_deploy/Deps,只需下载量化校准集和输入输出文件即可:./download.sh

🌟 Tips

  • 若想要直接获取原始weights和导出保存的模型可分别前往 weightsfmodels 网页上根据框架及模型名寻找并下载。

0. 文件结构说明

AI部署模型需要以下几部分文件

  • 0_spynet >模型原始工程,需要自行下载
  • weights >存放原始权重,需要自行下载
  • 1_scripts >若干脚本用于保存Icraft编译器需要的模型、编译后仿真等功能
  • 2_compile >Icraft编译器编译模型时所需要的文件
  • 3_deploy >将Icraft编译器编译出的模型部署到硬件时需要的c++工程

1. python工程准备

1. 模型来源:

2. 保存模型

目的将模型保存成可以被Icraft编译器编译的形态

1根据模型来源中的地址http://content.sniklaus.com/github/pytorch-spynet/network-sintel-final.pytorch 下载原始weights存放于 /weights文件夹中

注意:
  • 有时开源的weights url可能会变更。如果上述weights url失效请根据原工程相应的branch以及commit版本寻找正确的下载链接
  • 若上述weights url永久失效请联系本模型库相关人员获取权限下载

2根据模型来源中的地址下载指定commit id版本的源代码文件夹名称要设置为0_spynet

# 在此模型根目录
mkdir 0_spynet
git clone -b master https://github.com/sniklaus/pytorch-spynet 0_spynet
cd 0_spynet
git checkout 9383f4e

3进入1_scripts执行保存模型脚本

# 在此模型根目录
cd 1_scripts
python 1_save.py

1_scripts提供脚本说明

  • 环境要求:Icraft编译器对导出框架模型时使用的框架版本有要求。即以下脚本中所有导出模型的脚本 1_save.py ,必须在要求的框架版本下执行,其他脚本不限制。要求的版本:

    • pytorch支持pytorch1.9.0、pytorch2.0.1两个版本的原生网络模型文件(.pt格式以及pytorch框架保存为onnxopset=17格式的模型文件.onnx格式
    • paddle仅支持PaddlePaddle框架保存为onnxopset=11格式的模型文件.onnx格式不支持框架原生网络模型文件
    • darknet支持Darknet框架原生网络模型GitHub - pjreddie/darknet: Convolutional Neural Networks
  • 0_infer.py >可以推理一张图并得到最终结果,模型原始权重会从 /weights 中寻找,需要您预先下载

  • 1_save.py >保存模型保存好的用于Icraft编译器的模型会存放在 /2_compile/fmodel

    • 修改模型尺寸固定为320x544
    • 将前向中的前处理和常量初始化移出去
    • 修改backwarp分支中gridsample第二个输入的维度保证icraft解析成功
  • 2_save_infer.py >用修改后保存的模型做前向推理,验证保存的模型与原模型是否一致

2.使用Icraft编译器编译模型

目的: 使用Icraft编译器将上一步保存好的框架模型转化为硬件可部署模型

  • 1相关命名说明

    1fmodelframe model >用于Icraft编译器的框架模型

    2imodelicraft model >用Icraft编译器编译出的模型

    3qtsetQuantitative Calibration Set >Icraft编译器所需的量化校准集

  • 2确认已安装正确的icraft版本

    检查方法打开cmd运行icraft --version

    若已正常安装则会显示当前icraft版本例如

    Icraft 版本:
     * 3.7.1
    
    CLI 版本:
    3.7.0.0-a90988f(2412231401)
    
  • 3执行编译:

/2_compile目录下执行编译:

 ```
  icraft compile config/spynet_8.toml
  
1. 首先根据默认的`config/spynet_8.toml`编译模型其中quantize阶段的`mix_precision = "auto"`
2. 编译完成后,打开`.icraft/logs/spynet_320x544/spynet_320x544_mix_config.csv`文件,将除了第一个之外的所有`customop::GridSampleNode`之前的`icraft::xir::AddNode`算子的`dtype`改为`INT16`,`value_range_in_bits`改为`16;16`。
  3. 将`config/spynet_8.toml`文件中quantize阶段的混合精度配置为`mix_precision = ".icraft/logs/spynet_320x544/spynet_320x544_mix_config.csv"`为了适配gridsample fpga模块中输入1是8bit输入2是16bit。
  4. 最总再次编译模型,完成编译。
  
  如果过程顺利,将得到 icraft model以 `.json` graph`.raw`param的格式保存
  
  其中包括编译各阶段产生的中间结果模型和最终用于片上部署的BY模型直接被保存到:  3_deploy/modelzoo/spynet/imodel

# 3. 仿真

通过配置3_deploy/modelzoo/spynet/cfg/中yaml文件的sim字段为True实现模型仿真。

```json
imodel:
...
sim: true
...
#注目前该模型仅支持optimize阶段、adapt阶段、generate阶段的仿真。
#不支持parse阶段是因为网络直接解析出来的结构有多余的transpose会导致送入gridsample的数据维度错误需要在optimize阶段利用"customop.RemoveGridSampleTransposePass"去除
# 不支持quantize阶段仿真是因为由于硬件fpga模块gridsample目前仅支持8bit*16bit的精度格式使用配置好的混合精度量化模型后网络自动添加了cast算子把gridsample输入2从原来的16bit转为8bit,需要在adapt阶段利用pass_on = "customop.RemoveGridSampleCastPass"去除。

4. 部署模型

部署环境检查

  • 以root账户登录片上系统terminalssh或串口皆可模型库默认的模型存放路径为以下目录如果没有请预先创建
/home/fmsh/ModelZoo/
  • 检查板上环境是否正确:
    1. 查看环境变量,指令: icraft --version

      看打印信息是否如下:

      Icraft 版本:
      * v3.7.1
      
      CLI 版本:
      3.7.0.0-a90988f(2412231401)
      
    2. 若是,在任意目录下输入icraft-serve即可打开server

    3. 检查icraft和customop安装包版本是否为arm64

      # 检查icraft安装包版本
      dpkg -l | grep icraft
      # 检查customop安装包版本
      dpkg -l | grep customop
      

      如果依次显示如下信息,则安装版本正确:

      ii  icraft                         3.7.1                             arm64        This is Icraft for arm64
      ii  customop                       3.7.1                             arm64        This is Icraft CustomOp for arm64
      
    4. 如果环境配置有误,请参考Part 1_1 2.3.1 片上系统环境 编译环境准备进行部署环境配置。

    5. 根据此模型使用的硬算子,选择合适的位流,并在板上安装,所用硬算子及可选位流版本可参见本说明文档起始处的状态徽章,位流下载及安装说明请参考1/4) 其他下载资源

python runtime:

目的在AI硬件上执行模型前向推理

  1. python运行虚拟环境要求与准备

    • python版本3.8否则无法使用icraft的python API

    • 确保已安装icraft的python安装包

      • socket模式使用pip install icraft-3.x.x-cp38-none-win_amd64.whl
      • axi模式使用pip install icraft-3.x.x-cp38-none-manylinux2014_aarch64.whl
    • 在选定的python运行虚拟环境中安装python运行时所需要的依赖包

      cd 3_deploy/modelzoo/spynet
      pip install -r requirements.txt
      
    • 安装一些便于开发pyrt的依赖包

      cd 3_deploy/Deps/modelzoo
      pip install -e .
      
      由于python运行时代码在引入依赖包时候已经通过sys.path.append(R"../../../Deps/modelzoo")将一些便于开发pyrt的依赖包加入到了系统路径下因此可以不用执行该步骤即可直接运行2.执行程序。这里提供额外的[pip install -e .]安装方式是为了在python运行时代码时候方便进行pyrtutils的依赖跳转。
  2. 执行程序

    python ./spynet_psin.py ../cfg/spynet.yaml
    

    在io/output中查看结果

5. 模型性能记录

spynet input shape hard time 精度(待测)
[1, 3, 320, 544][1,3,320,544] {'8bit': '20.1251ms', '16bit': '40.000ms', 'mixed': None} {'float': None, 'parse': None, 'int8': [], 'int16': [], 'mixed': None}