321 lines
16 KiB
Python
321 lines
16 KiB
Python
# -*- coding:utf-8 -*-
|
||
# 该脚本用来加载torchscript模型,并执行单张图片推理
|
||
import argparse
|
||
import time
|
||
from pathlib import Path
|
||
|
||
import cv2
|
||
import torch
|
||
from numpy import random
|
||
import sys
|
||
sys.path.append(R"../0_segrnn")
|
||
|
||
import argparse
|
||
import os
|
||
import torch
|
||
from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast
|
||
from exp.exp_classification import Exp_Classification
|
||
from utils.print_args import print_args
|
||
from utils.tools import visual
|
||
|
||
from models import SegRNN
|
||
import torch.nn.functional as F
|
||
|
||
import random
|
||
import numpy as np
|
||
def cal_accuracy(y_pred, y_true):
|
||
return np.mean(y_pred == y_true)
|
||
|
||
def cal_precision_recall(predictions, trues):
|
||
TP = np.sum((predictions == 1) & (trues == 1))
|
||
FP = np.sum((predictions == 1) & (trues == 0))
|
||
FN = np.sum((predictions == 0) & (trues == 1))
|
||
|
||
precision = TP / (TP + FP)
|
||
recall = TP / (TP + FN)
|
||
f1 = 2 * (precision * recall) / (precision + recall)
|
||
|
||
return precision, recall, f1
|
||
def segrnn_forward_ltf(self, x,pos_emb,hx):
|
||
|
||
x = self.valueEmbedding(x.reshape(-1, self.seg_num_x, self.seg_len))
|
||
# encoding
|
||
_, hn = self.rnn(x, hx) # bc,n,d 1,bc,d
|
||
h0 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h1 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h2 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h3 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
hn = torch.cat([h0,h1,h2,h3], dim=2)
|
||
hn = hn.view(1, -1, self.d_model)
|
||
_, hy = self.rnn(pos_emb, hn) # bcm,1,d 1,bcm,d
|
||
y = self.predict(hy).view(-1, self.enc_in, self.pred_len)
|
||
y = y.permute(0, 2, 1)
|
||
return y
|
||
|
||
def segrnn_forward_cls(self, x,pos_emb,hx):
|
||
|
||
# segment and embedding b,c,s -> bc,n,w -> bc,n,d
|
||
x = self.valueEmbedding(x.reshape(-1, self.seg_num_x, self.seg_len))
|
||
|
||
# encoding
|
||
_, hn = self.rnn(x, hx) # bc,n,d 1,bc,d
|
||
|
||
h0 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h1 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h2 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h3 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h4 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h5 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h6 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h7 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
h8 = F.max_pool1d(hn, kernel_size=1, stride=1)
|
||
|
||
# hn = hn.repeat(1, 1, self.seg_num_y)
|
||
hn = torch.cat([h0,h1,h2,h3,h4,h5,h6,h7,h8], dim=2)
|
||
hn = hn.view(1, -1, self.d_model)
|
||
_, hy = self.rnn(pos_emb, hn) # bcm,1,d 1,bcm,d
|
||
|
||
# 1,bcm,d -> 1,bcm,w -> b,c,s
|
||
y = self.predict(hy).view(-1, self.enc_in, self.pred_len)
|
||
|
||
# permute and denorm
|
||
y = y.permute(0, 2, 1)
|
||
|
||
output = y.reshape(y.shape[0], -1)
|
||
# (batch_size, num_classes)
|
||
output = self.projection(output)
|
||
return output
|
||
|
||
|
||
def infer(self, setting, test=0):
|
||
|
||
# if test:
|
||
# print('loading model')
|
||
# self.model.load_state_dict(torch.load(os.path.join('../0_segrnn/checkpoints/' + setting, 'checkpoint.pth')))
|
||
|
||
preds = []
|
||
trues = []
|
||
folder_path = './test_results/' + setting + '/'
|
||
if not os.path.exists(folder_path):
|
||
os.makedirs(folder_path)
|
||
|
||
# self.model.eval()
|
||
with torch.no_grad():
|
||
if self.args.task_name == 'long_term_forecast':
|
||
self.model = torch.jit.load(self.args.model_pt['ltf'])
|
||
print('model load Done')
|
||
test_data, test_loader = self._get_data(flag='test')
|
||
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader):
|
||
batch_x = batch_x.float().to(self.device)
|
||
batch_y = batch_y.float().to(self.device)
|
||
|
||
batch_x_mark = batch_x_mark.float().to(self.device)
|
||
batch_y_mark = batch_y_mark.float().to(self.device)
|
||
|
||
# decoder input
|
||
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
|
||
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
|
||
|
||
# #forward
|
||
# outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
|
||
# #trace
|
||
# SegRNN.Model.forward = segrnn_forward_ltf
|
||
pos_emb = torch.load('../2_compile/fmodel/pos_emb_ltf.pth').cpu()
|
||
seq_last = batch_x[:, -1:, :].detach()
|
||
batch_x = (batch_x - seq_last).permute(0, 2, 1) # b,c,s
|
||
hx = torch.zeros(1,7, 512, dtype=batch_x.dtype, device=batch_x.device)
|
||
|
||
# traced_script_module = torch.jit.trace(self.model.cpu(),(batch_x.cpu(), pos_emb.cpu(), hx.cpu()))
|
||
traced_out = self.model(batch_x, pos_emb, hx)
|
||
|
||
#compare to outputs
|
||
outputs = traced_out+seq_last
|
||
f_dim = -1 if self.args.features == 'MS' else 0
|
||
outputs = outputs[:, -self.args.pred_len:, :]
|
||
batch_y = batch_y[:, -self.args.pred_len:, :].to(self.device)
|
||
outputs = outputs.detach().cpu().numpy()
|
||
batch_y = batch_y.detach().cpu().numpy()
|
||
outputs = outputs[:, :, f_dim:]
|
||
batch_y = batch_y[:, :, f_dim:]
|
||
pred = outputs
|
||
true = batch_y
|
||
preds.append(pred)
|
||
trues.append(true)
|
||
input = (batch_x.permute(0, 2, 1)+seq_last).detach().cpu().numpy()
|
||
gt = np.concatenate((input[0, :, -1], true[0, :, -1]), axis=0)
|
||
pd = np.concatenate((input[0, :, -1], pred[0, :, -1]), axis=0)
|
||
visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf'))
|
||
print('pt model infer fished,result saved in{}'.format(folder_path))
|
||
|
||
|
||
break
|
||
elif args.task_name == 'classification':
|
||
self.model = torch.jit.load(self.args.model_pt['cls'])
|
||
print('model load Done')
|
||
test_data, test_loader = self._get_data(flag='TEST')
|
||
for i, (batch_x, label, padding_mask) in enumerate(test_loader):
|
||
batch_x = batch_x.float().to(self.device)
|
||
padding_mask = padding_mask.float().to(self.device)
|
||
label = label.to(self.device)
|
||
#forward
|
||
pos_emb = torch.load('../2_compile/fmodel/pos_emb_cls.pth')
|
||
batch_x = batch_x.permute(0, 2, 1)
|
||
hx = torch.zeros(1,61, 512, dtype=batch_x.dtype, device=batch_x.device)
|
||
|
||
# traced_script_module = torch.jit.trace(self.model.cpu(),(batch_x.cpu(), pos_emb.cpu(), hx.cpu()))
|
||
traced_out = self.model(batch_x.cpu(), pos_emb.cpu(), hx.cpu())
|
||
outputs = traced_out
|
||
|
||
|
||
|
||
probs = torch.nn.functional.softmax(outputs) # (total_samples, num_classes) est. prob. for each class and sample
|
||
predictions = torch.argmax(probs, dim=1).cpu().numpy() # (total_samples,) int class index for each sample
|
||
trues = label.flatten().cpu().numpy()
|
||
print('pt model infer fished,result:')
|
||
print('predictions:{},trues{}'.format(predictions,trues))
|
||
|
||
break
|
||
return
|
||
if __name__ == '__main__':
|
||
fix_seed = 2024
|
||
random.seed(fix_seed)
|
||
torch.manual_seed(fix_seed)
|
||
np.random.seed(fix_seed)
|
||
|
||
parser = argparse.ArgumentParser(description='TimesNet')
|
||
|
||
# basic config
|
||
parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast',
|
||
help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
|
||
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
|
||
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
|
||
parser.add_argument('--model', type=str, required=True, default='Autoformer',
|
||
help='model name, options: [Autoformer, Transformer, TimesNet]')
|
||
parser.add_argument('--model_pt', type=dict, default={'ltf':'../2_compile/fmodel/segrnn_ltf.pt','cls':'../2_compile/fmodel/segrnn_cls.pt'}, help='torchscript model path')
|
||
|
||
# data loader
|
||
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
|
||
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
|
||
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
|
||
parser.add_argument('--features', type=str, default='M',
|
||
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
|
||
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
|
||
parser.add_argument('--freq', type=str, default='h',
|
||
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
|
||
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
|
||
|
||
# forecasting task
|
||
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
|
||
parser.add_argument('--label_len', type=int, default=48, help='start token length')
|
||
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
|
||
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
|
||
parser.add_argument('--inverse', action='store_true', help='inverse output data', default=False)
|
||
|
||
|
||
|
||
# model define
|
||
parser.add_argument('--expand', type=int, default=2, help='expansion factor for Mamba')
|
||
parser.add_argument('--d_conv', type=int, default=4, help='conv kernel size for Mamba')
|
||
parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
|
||
parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
|
||
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
|
||
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
|
||
parser.add_argument('--c_out', type=int, default=7, help='output size')
|
||
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
|
||
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
|
||
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
|
||
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
|
||
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
|
||
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
|
||
parser.add_argument('--factor', type=int, default=1, help='attn factor')
|
||
parser.add_argument('--distil', action='store_false',
|
||
help='whether to use distilling in encoder, using this argument means not using distilling',
|
||
default=True)
|
||
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
|
||
parser.add_argument('--embed', type=str, default='timeF',
|
||
help='time features encoding, options:[timeF, fixed, learned]')
|
||
parser.add_argument('--activation', type=str, default='gelu', help='activation')
|
||
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
|
||
parser.add_argument('--channel_independence', type=int, default=1,
|
||
help='0: channel dependence 1: channel independence for FreTS model')
|
||
parser.add_argument('--decomp_method', type=str, default='moving_avg',
|
||
help='method of series decompsition, only support moving_avg or dft_decomp')
|
||
parser.add_argument('--use_norm', type=int, default=1, help='whether to use normalize; True 1 False 0')
|
||
parser.add_argument('--down_sampling_layers', type=int, default=0, help='num of down sampling layers')
|
||
parser.add_argument('--down_sampling_window', type=int, default=1, help='down sampling window size')
|
||
parser.add_argument('--down_sampling_method', type=str, default=None,
|
||
help='down sampling method, only support avg, max, conv')
|
||
parser.add_argument('--seg_len', type=int, default=48,
|
||
help='the length of segmen-wise iteration of SegRNN')
|
||
|
||
# optimization
|
||
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
|
||
parser.add_argument('--itr', type=int, default=1, help='experiments times')
|
||
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
|
||
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
|
||
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
|
||
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
|
||
parser.add_argument('--des', type=str, default='test', help='exp description')
|
||
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
|
||
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
|
||
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
|
||
|
||
# GPU
|
||
parser.add_argument('--use_gpu', type=bool, default=False, help='use gpu')
|
||
parser.add_argument('--gpu', type=int, default=0, help='gpu')
|
||
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
|
||
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
|
||
|
||
# de-stationary projector params
|
||
parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128],
|
||
help='hidden layer dimensions of projector (List)')
|
||
parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
|
||
|
||
# metrics (dtw)
|
||
parser.add_argument('--use_dtw', type=bool, default=False,
|
||
help='the controller of using dtw metric (dtw is time consuming, not suggested unless necessary)')
|
||
|
||
args = parser.parse_args()
|
||
|
||
print('Args in experiment:')
|
||
print_args(args)
|
||
|
||
if args.task_name == 'long_term_forecast':
|
||
Exp_Long_Term_Forecast.infer = infer
|
||
Exp = Exp_Long_Term_Forecast
|
||
elif args.task_name == 'classification':
|
||
Exp_Classification.infer = infer
|
||
Exp = Exp_Classification
|
||
else:
|
||
Exp = Exp_Long_Term_Forecast
|
||
|
||
|
||
if args.is_training:
|
||
pass
|
||
else:
|
||
ii = 0
|
||
exp = Exp(args) # set experiments
|
||
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format(
|
||
args.task_name,
|
||
args.model_id,
|
||
args.model,
|
||
args.data,
|
||
args.features,
|
||
args.seq_len,
|
||
args.label_len,
|
||
args.pred_len,
|
||
args.d_model,
|
||
args.n_heads,
|
||
args.e_layers,
|
||
args.d_layers,
|
||
args.d_ff,
|
||
args.expand,
|
||
args.d_conv,
|
||
args.factor,
|
||
args.embed,
|
||
args.distil,
|
||
args.des, ii)
|
||
print('>>>>>>>infer : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
|
||
exp.infer(setting, test=1)
|
||
|