mdz/pytorch/segrnn/1_scripts/1_save.py

412 lines
19 KiB
Python

# -*- coding:utf-8 -*-
# 该脚本用来保存torchscript模型
import argparse
import time
from pathlib import Path
import cv2
import torch
from numpy import random
import sys
sys.path.append(R"../0_segrnn")
import argparse
import os
import torch
from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast
from exp.exp_classification import Exp_Classification
from utils.print_args import print_args
from utils.tools import visual
from models import SegRNN
import torch.nn.functional as F
import random
import numpy as np
def cal_accuracy(y_pred, y_true):
return np.mean(y_pred == y_true)
def cal_precision_recall(predictions, trues):
TP = np.sum((predictions == 1) & (trues == 1))
FP = np.sum((predictions == 1) & (trues == 0))
FN = np.sum((predictions == 0) & (trues == 1))
precision = TP / (TP + FP)
recall = TP / (TP + FN)
f1 = 2 * (precision * recall) / (precision + recall)
return precision, recall, f1
def encoder(self, x):
# b:batch_size c:channel_size s:seq_len s:seq_len
# d:d_model w:seg_len n:seg_num_x m:seg_num_y
batch_size = x.size(0)
# normalization and permute b,s,c -> b,c,s
seq_last = x[:, -1:, :].detach()
if self.task_name == 'classification':
x = x.permute(0, 2, 1) # b,c,s
else:
x = (x - seq_last).permute(0, 2, 1) # b,c,s
# segment and embedding b,c,s -> bc,n,w -> bc,n,d
x = self.valueEmbedding(x.reshape(-1, self.seg_num_x, self.seg_len))
# encoding
_, hn = self.rnn(x) # bc,n,d 1,bc,d
# m,d//2 -> 1,m,d//2 -> c,m,d//2
# c,d//2 -> c,1,d//2 -> c,m,d//2
# c,m,d -> cm,1,d -> bcm, 1, d
pos_emb = torch.cat([
self.pos_emb.unsqueeze(0).repeat(self.enc_in, 1, 1),
self.channel_emb.unsqueeze(1).repeat(1, self.seg_num_y, 1)
], dim=-1).view(-1, 1, self.d_model).repeat(batch_size,1,1)
#poe_emb save
if self.task_name == 'classification':
torch.save(pos_emb,'../2_compile/fmodel/pos_emb_cls.pth')
else:
torch.save(pos_emb,'../2_compile/fmodel/pos_emb_ltf.pth')
_, hy = self.rnn(pos_emb, hn.repeat(1, 1, self.seg_num_y).view(1, -1, self.d_model)) # bcm,1,d 1,bcm,d
# 1,bcm,d -> 1,bcm,w -> b,c,s
y = self.predict(hy).view(-1, self.enc_in, self.pred_len)
# permute and denorm
if self.task_name == 'classification':
y = y.permute(0, 2, 1)
else:
y = y.permute(0, 2, 1) + seq_last
return y
def segrnn_forward_ltf(self, x,pos_emb,hx):
x = self.valueEmbedding(x.reshape(-1, self.seg_num_x, self.seg_len))
# encoding
_, hn = self.rnn(x, hx) # bc,n,d 1,bc,d
h0 = F.max_pool1d(hn, kernel_size=1, stride=1)
h1 = F.max_pool1d(hn, kernel_size=1, stride=1)
h2 = F.max_pool1d(hn, kernel_size=1, stride=1)
h3 = F.max_pool1d(hn, kernel_size=1, stride=1)
hn = torch.cat([h0,h1,h2,h3], dim=2)
hn = hn.view(1, -1, self.d_model)
_, hy = self.rnn(pos_emb, hn) # bcm,1,d 1,bcm,d
y = self.predict(hy).view(-1, self.enc_in, self.pred_len)
y = y.permute(0, 2, 1)
return y
def segrnn_forward_cls(self, x,pos_emb,hx):
# segment and embedding b,c,s -> bc,n,w -> bc,n,d
x = self.valueEmbedding(x.reshape(-1, self.seg_num_x, self.seg_len))
# encoding
_, hn = self.rnn(x, hx) # bc,n,d 1,bc,d
h0 = F.max_pool1d(hn, kernel_size=1, stride=1)
h1 = F.max_pool1d(hn, kernel_size=1, stride=1)
h2 = F.max_pool1d(hn, kernel_size=1, stride=1)
h3 = F.max_pool1d(hn, kernel_size=1, stride=1)
h4 = F.max_pool1d(hn, kernel_size=1, stride=1)
h5 = F.max_pool1d(hn, kernel_size=1, stride=1)
h6 = F.max_pool1d(hn, kernel_size=1, stride=1)
h7 = F.max_pool1d(hn, kernel_size=1, stride=1)
h8 = F.max_pool1d(hn, kernel_size=1, stride=1)
# hn = hn.repeat(1, 1, self.seg_num_y)
hn = torch.cat([h0,h1,h2,h3,h4,h5,h6,h7,h8], dim=2)
hn = hn.view(1, -1, self.d_model)
_, hy = self.rnn(pos_emb, hn) # bcm,1,d 1,bcm,d
# 1,bcm,d -> 1,bcm,w -> b,c,s
y = self.predict(hy).view(-1, self.enc_in, self.pred_len)
# permute and denorm
y = y.permute(0, 2, 1)
output = y.reshape(y.shape[0], -1)
# (batch_size, num_classes)
output = self.projection(output)
return output
def infer(self, setting, test=0):
if test:
print('loading model')
self.model.load_state_dict(torch.load(os.path.join('../weights/' + setting, 'checkpoint.pth')))
preds = []
trues = []
folder_path = './test_results/' + setting + '/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
self.model.eval()
traced_script_module = None
with torch.no_grad():
if self.args.task_name == 'long_term_forecast':
test_data, test_loader = self._get_data(flag='test')
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader):
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float().to(self.device)
batch_x_mark = batch_x_mark.float().to(self.device)
batch_y_mark = batch_y_mark.float().to(self.device)
# decoder input
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
#trace
SegRNN.Model.encoder = encoder
self.model.encoder(batch_x)
SegRNN.Model.forward = segrnn_forward_ltf
pos_emb = torch.load('../2_compile/fmodel/pos_emb_ltf.pth').cpu()
seq_last = batch_x[:, -1:, :].detach()
batch_x = (batch_x - seq_last).permute(0, 2, 1) # b,c,s
hx = torch.zeros(1,7, 512, dtype=batch_x.dtype, device=batch_x.device)
os.makedirs("../2_compile/qtset/ltf",exist_ok=True)
os.makedirs("../3_deploy/modelzoo/segrnn/io/ltf/input",exist_ok=True)
os.makedirs("../3_deploy/modelzoo/segrnn/io/ltf/label",exist_ok=True)
if traced_script_module is None:
traced_script_module = torch.jit.trace(self.model.cpu(),(batch_x.cpu(), pos_emb.cpu(), hx.cpu()))
traced_out = traced_script_module(batch_x, pos_emb, hx)
#compare to outputs
traced_outputs = traced_out+seq_last
# 保存TorchScript模型
traced_script_module.save('../2_compile/fmodel/segrnn_ltf.pt')
torch.onnx.export(self.model, (batch_x, pos_emb, hx), "../2_compile/fmodel/segrnn_ltf.onnx", verbose=True)
batch_x.cpu().numpy().astype('float32').tofile('../2_compile/qtset/ltf/'+str(i)+'.ftmp')
hx.cpu().numpy().astype('float32').tofile('../2_compile/qtset/ltf/hx.ftmp')
pos_emb.cpu().numpy().astype('float32').tofile('../2_compile/qtset/ltf/pos_emb.ftmp')
batch_x.cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/ltf/input/'+str(i)+'.ftmp')
(batch_y-seq_last).cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/ltf/label/'+str(i)+'.ftmp')
hx.cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/ltf/input/hx.ftmp')
pos_emb.cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/ltf/input/pos_emb.ftmp')
else:
batch_x.cpu().numpy().astype('float32').tofile('../2_compile/qtset/ltf/'+str(i)+'.ftmp')
batch_x.cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/ltf/input/'+str(i)+'.ftmp')
(batch_y-seq_last).cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/ltf/label/'+str(i)+'.ftmp')
elif args.task_name == 'classification':
test_data, test_loader = self._get_data(flag='TEST')
for i, (batch_x, label, padding_mask) in enumerate(test_loader):
batch_x = batch_x.float().to(self.device)
padding_mask = padding_mask.float().to(self.device)
label = label.to(self.device)
#forward
SegRNN.Model.encoder = encoder
self.model.encoder(batch_x)
#trace
SegRNN.Model.forward = segrnn_forward_cls
# outputs = self.model(batch_x, padding_mask, hx)
pos_emb = torch.load(R'../2_compile/fmodel/pos_emb_cls.pth')
batch_x = batch_x.permute(0, 2, 1)
hx = torch.zeros(1,61, 512, dtype=batch_x.dtype, device=batch_x.device)
os.makedirs("../2_compile/qtset/cls",exist_ok=True)
os.makedirs("../3_deploy/modelzoo/segrnn/io/cls/input",exist_ok=True)
os.makedirs("../3_deploy/modelzoo/segrnn/io/cls/label",exist_ok=True)
if traced_script_module is None:
traced_script_module = torch.jit.trace(self.model.cpu(),(batch_x.cpu(), pos_emb.cpu(), hx.cpu()))
traced_out = traced_script_module(batch_x.cpu(), pos_emb.cpu(), hx.cpu())
outputs = traced_out
# 保存TorchScript模型
traced_script_module.save(R'../2_compile/fmodel/segrnn_cls.pt')
torch.onnx.export(self.model, (batch_x.cpu(), pos_emb.cpu(), hx.cpu()), R"../2_compile/fmodel/segrnn_cls.onnx", verbose=True)
batch_x.cpu().numpy().astype('float32').tofile('../2_compile/qtset/cls/'+str(i)+'.ftmp')
hx.cpu().numpy().astype('float32').tofile('../2_compile/qtset/cls/hx.ftmp')
pos_emb.cpu().numpy().astype('float32').tofile('../2_compile/qtset/cls/pos_emb.ftmp')
batch_x.cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/cls/input/'+str(i)+'.ftmp')
label.cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/cls/label/'+str(i)+'.ftmp')
hx.cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/cls/input/hx.ftmp')
pos_emb.cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/cls/input/pos_emb.ftmp')
else:
batch_x.cpu().numpy().astype('float32').tofile('../2_compile/qtset/cls/'+str(i)+'.ftmp')
batch_x.cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/cls/input/'+str(i)+'.ftmp')
label.cpu().numpy().astype('float32').tofile('../3_deploy/modelzoo/segrnn/io/cls/label/'+str(i)+'.ftmp')
return
if __name__ == '__main__':
fix_seed = 2024
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
parser = argparse.ArgumentParser(description='TimesNet')
# basic config
parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast',
help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='Autoformer',
help='model name, options: [Autoformer, Transformer, TimesNet]')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
parser.add_argument('--inverse', action='store_true', help='inverse output data', default=False)
# model define
parser.add_argument('--expand', type=int, default=2, help='expansion factor for Mamba')
parser.add_argument('--d_conv', type=int, default=4, help='conv kernel size for Mamba')
parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--channel_independence', type=int, default=1,
help='0: channel dependence 1: channel independence for FreTS model')
parser.add_argument('--decomp_method', type=str, default='moving_avg',
help='method of series decompsition, only support moving_avg or dft_decomp')
parser.add_argument('--use_norm', type=int, default=1, help='whether to use normalize; True 1 False 0')
parser.add_argument('--down_sampling_layers', type=int, default=0, help='num of down sampling layers')
parser.add_argument('--down_sampling_window', type=int, default=1, help='down sampling window size')
parser.add_argument('--down_sampling_method', type=str, default=None,
help='down sampling method, only support avg, max, conv')
parser.add_argument('--seg_len', type=int, default=48,
help='the length of segmen-wise iteration of SegRNN')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=False, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
# de-stationary projector params
parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128],
help='hidden layer dimensions of projector (List)')
parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
# metrics (dtw)
parser.add_argument('--use_dtw', type=bool, default=False,
help='the controller of using dtw metric (dtw is time consuming, not suggested unless necessary)')
args = parser.parse_args()
print('Args in experiment:')
print_args(args)
if args.task_name == 'long_term_forecast':
Exp_Long_Term_Forecast.infer = infer
Exp = Exp_Long_Term_Forecast
elif args.task_name == 'classification':
Exp_Classification.infer = infer
Exp = Exp_Classification
else:
Exp = Exp_Long_Term_Forecast
if args.is_training:
pass
else:
ii = 0
exp = Exp(args) # set experiments
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.expand,
args.d_conv,
args.factor,
args.embed,
args.distil,
args.des, ii)
print('>>>>>>>infer : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.infer(setting, test=1)