mdz/pytorch/sac/1_scripts/2_save_infer.py

170 lines
6.1 KiB
Python

import argparse
import os
import sys
from torch import nn
import numpy as np
import torch as th
import onnxruntime as ort
sys.path.append(R"../0_sac")
from copy import deepcopy
import yaml
from huggingface_sb3 import EnvironmentName
from stable_baselines3.common.callbacks import tqdm
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3.common.type_aliases import PyTorchObs
from rl_zoo3 import ALGOS, create_test_env, get_saved_hyperparams
from rl_zoo3.utils import StoreDict, get_model_path
def enjoy() -> None: # noqa: C901
parser = argparse.ArgumentParser()
parser.add_argument("--env", help="environment ID", type=EnvironmentName, default="CarRacing-v2")
parser.add_argument("-f", "--folder", help="Log folder", type=str, default="..\\weights")
parser.add_argument("--algo", help="RL Algorithm", default="sac", type=str, required=False, choices=list(ALGOS.keys()))
parser.add_argument("-n", "--n-timesteps", help="number of timesteps", default=1000, type=int)
parser.add_argument("--num-threads", help="Number of threads for PyTorch (-1 to use default)", default=-1, type=int)
parser.add_argument("--n-envs", help="number of environments", default=1, type=int)
parser.add_argument("--exp-id", help="Experiment ID (default: 0: latest, -1: no exp folder)", default=0, type=int)
parser.add_argument("--verbose", help="Verbose mode (0: no output, 1: INFO)", default=1, type=int)
parser.add_argument(
"--no-render", action="store_true", default=False, help="Do not render the environment (useful for tests)"
)
parser.add_argument("--deterministic", action="store_true", default=False, help="Use deterministic actions")
parser.add_argument("--device", help="PyTorch device to be use (ex: cpu, cuda...)", default="auto", type=str)
parser.add_argument(
"--load-best", action="store_true", default=True, help="Load best model instead of last model if available"
)
parser.add_argument(
"--norm-reward", action="store_true", default=False, help="Normalize reward if applicable (trained with VecNormalize)"
)
parser.add_argument("--seed", help="Random generator seed", type=int, default=0)
parser.add_argument("--reward-log", help="Where to log reward", default="", type=str)
parser.add_argument(
"--env-kwargs", type=str, nargs="+", action=StoreDict, help="Optional keyword argument to pass to the env constructor"
)
parser.add_argument(
"--custom-objects", action="store_true", default=False, help="Use custom objects to solve loading issues"
)
args = parser.parse_args()
env_name: EnvironmentName = args.env
algo = args.algo
folder = args.folder
_, model_path, log_path = get_model_path(
args.exp_id,
folder,
algo,
env_name,
args.load_best,
)
set_random_seed(args.seed)
if args.num_threads > 0:
if args.verbose > 1:
print(f"Setting torch.num_threads to {args.num_threads}")
th.set_num_threads(args.num_threads)
stats_path = os.path.join(log_path, env_name)
hyperparams, maybe_stats_path = get_saved_hyperparams(stats_path, norm_reward=args.norm_reward, test_mode=True)
# gym环境及参数加载
env_kwargs = {}
args_path = os.path.join(log_path, env_name, "args.yml")
if os.path.isfile(args_path):
with open(args_path) as f:
loaded_args = yaml.load(f, Loader=yaml.UnsafeLoader)
if loaded_args["env_kwargs"] is not None:
env_kwargs = loaded_args["env_kwargs"]
# overwrite with command line arguments
if args.env_kwargs is not None:
env_kwargs.update(args.env_kwargs)
log_dir = args.reward_log if args.reward_log != "" else None
env = create_test_env(
env_name.gym_id,
n_envs=args.n_envs,
stats_path=maybe_stats_path,
seed=args.seed,
log_dir=log_dir,
should_render=not args.no_render,
hyperparams=hyperparams,
env_kwargs=env_kwargs,
)
# obs = env.reset()
obs = env.reset()
save_path = R"..\3_deploy\modelzoo\sac\imodel"
ort_session = ort.InferenceSession(save_path+'\\sac_carracing.onnx')
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
#推理
episode_reward = 0.0
episode_rewards, episode_lengths = [], []
ep_len = 0
episode_reward = 0.0
episode_rewards, episode_lengths = [], []
ep_len = 0
generator = range(args.n_timesteps)
try:
for _ in generator:
obs_onnx = np.transpose(deepcopy(obs), (0, 3, 1, 2)).astype(np.float32)
outputs = ort_session.run([output_name], {input_name: obs_onnx})
action = outputs[0].reshape((-1, *env.action_space.shape))
low, high = env.action_space.low, env.action_space.high
action_onnx= low + (0.5 * (action + 1.0) * (high - low))
obs, reward, done, infos = env.step(action_onnx)
if not args.no_render:
env.render("human")
episode_reward += reward[0]
ep_len += 1
if args.n_envs == 1:
if done and args.verbose > 0:
print(f"Episode Reward: {episode_reward:.2f}")
print("Episode Length", ep_len)
episode_rewards.append(episode_reward)
episode_lengths.append(ep_len)
episode_reward = 0.0
ep_len = 0
except KeyboardInterrupt:
pass
if args.verbose > 0 and len(episode_rewards) > 0:
print(f"{len(episode_rewards)} Episodes")
print(f"Mean reward: {np.mean(episode_rewards):.2f} +/- {np.std(episode_rewards):.2f}")
if args.verbose > 0 and len(episode_lengths) > 0:
print(f"Mean episode length: {np.mean(episode_lengths):.2f} +/- {np.std(episode_lengths):.2f}")
env.close()
if __name__ == "__main__":
enjoy()