mdz/pytorch/ppo_lstm/1_scripts/1_save.py

219 lines
8.6 KiB
Python

import argparse
import importlib
import os
import sys
sys.path.append(R"../0_ppo_lstm")
from torch import nn
import numpy as np
import torch as th
import onnxruntime as ort
from typing import Tuple
from copy import deepcopy
import yaml
from huggingface_sb3 import EnvironmentName
from stable_baselines3.common.callbacks import tqdm
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3.common.type_aliases import PyTorchObs
from sb3_contrib.common.recurrent.type_aliases import RNNStates
from rl_zoo3 import ALGOS, create_test_env, get_saved_hyperparams
from rl_zoo3.exp_manager import ExperimentManager
from rl_zoo3.utils import StoreDict, get_model_path
class CustomPPOLSTM(nn.Module):
def __init__(self,
base_model,
deterministic):
super(CustomPPOLSTM, self).__init__()
self.base_model = base_model.policy
self.deterministic = deterministic
def forward(
self,
observation: th.Tensor,
lstm_states: Tuple[th.Tensor, th.Tensor],
episode_starts: th.Tensor):
distribution, lstm_states = self.base_model.get_distribution(observation, lstm_states, episode_starts)
return distribution.get_actions(deterministic=True), lstm_states
def enjoy() -> None: # noqa: C901
parser = argparse.ArgumentParser()
parser.add_argument("--env", help="environment ID", type=EnvironmentName, default="CarRacing-v2")
parser.add_argument("-f", "--folder", help="Log folder", type=str, default="..\\weights")
parser.add_argument("--algo", help="RL Algorithm", default="ppo_lstm", type=str, required=False, choices=list(ALGOS.keys()))
parser.add_argument("-n", "--n-timesteps", help="number of timesteps", default=2000, type=int)
parser.add_argument("--num-threads", help="Number of threads for PyTorch (-1 to use default)", default=-1, type=int)
parser.add_argument("--n-envs", help="number of environments", default=1, type=int)
parser.add_argument("--exp-id", help="Experiment ID (default: 0: latest, -1: no exp folder)", default=0, type=int)
parser.add_argument("--verbose", help="Verbose mode (0: no output, 1: INFO)", default=1, type=int)
parser.add_argument(
"--no-render", action="store_true", default=False, help="Do not render the environment (useful for tests)"
)
parser.add_argument("--deterministic", action="store_true", default=False, help="Use deterministic actions")
parser.add_argument("--device", help="PyTorch device to be use (ex: cpu, cuda...)", default="auto", type=str)
parser.add_argument(
"--load-best", action="store_true", default=True, help="Load best model instead of last model if available"
)
parser.add_argument(
"--norm-reward", action="store_true", default=False, help="Normalize reward if applicable (trained with VecNormalize)"
)
parser.add_argument("--seed", help="Random generator seed", type=int, default=0)
parser.add_argument("--reward-log", help="Where to log reward", default="", type=str)
parser.add_argument(
"--env-kwargs", type=str, nargs="+", action=StoreDict, help="Optional keyword argument to pass to the env constructor"
)
parser.add_argument(
"--custom-objects", action="store_true", default=False, help="Use custom objects to solve loading issues"
)
args = parser.parse_args()
env_name: EnvironmentName = args.env
algo = args.algo
folder = args.folder
# 模型及参数加载
_, model_path, log_path = get_model_path(
args.exp_id,
folder,
algo,
env_name,
args.load_best,
)
print(f"Loading {model_path}")
# Off-policy algorithm only support one env for now
off_policy_algos = ["qrdqn", "dqn", "ddpg", "sac", "her", "td3", "tqc"]
set_random_seed(args.seed)
if args.num_threads > 0:
if args.verbose > 1:
print(f"Setting torch.num_threads to {args.num_threads}")
th.set_num_threads(args.num_threads)
stats_path = os.path.join(log_path, env_name)
hyperparams, maybe_stats_path = get_saved_hyperparams(stats_path, norm_reward=args.norm_reward, test_mode=True)
# gym环境及参数加载
env_kwargs = {}
args_path = os.path.join(log_path, env_name, "args.yml")
if os.path.isfile(args_path):
with open(args_path) as f:
loaded_args = yaml.load(f, Loader=yaml.UnsafeLoader)
if loaded_args["env_kwargs"] is not None:
env_kwargs = loaded_args["env_kwargs"]
# overwrite with command line arguments
if args.env_kwargs is not None:
env_kwargs.update(args.env_kwargs)
log_dir = args.reward_log if args.reward_log != "" else None
env = create_test_env(
env_name.gym_id,
n_envs=args.n_envs,
stats_path=maybe_stats_path,
seed=args.seed,
log_dir=log_dir,
should_render=not args.no_render,
hyperparams=hyperparams,
env_kwargs=env_kwargs,
)
kwargs = dict(seed=args.seed)
if algo in off_policy_algos:
kwargs.update(dict(buffer_size=1))
if "optimize_memory_usage" in hyperparams:
kwargs.update(optimize_memory_usage=False)
newer_python_version = sys.version_info.major == 3 and sys.version_info.minor >= 8
custom_objects = {}
if newer_python_version or args.custom_objects:
custom_objects = {
"learning_rate": 0.0,
"lr_schedule": lambda _: 0.0,
"clip_range": lambda _: 0.0,
}
model = ALGOS[algo].load(model_path, custom_objects=custom_objects, device=args.device, **kwargs)
obs = env.reset()
deterministic = not True
episode_reward = 0.0
episode_rewards, episode_lengths = [], []
ep_len = 0
lstm_states = None
episode_start = np.ones((env.num_envs,), dtype=bool)
state = None
lstm_states_org = None
#onnx模型导出
deterministic = True
model_trace = CustomPPOLSTM(model,deterministic=deterministic)
try:
generator = range(2)
model_trace.eval()
if lstm_states is None:
# Initialize hidden states to zeros
state = np.concatenate([np.zeros(model_trace.base_model.lstm_hidden_state_shape) for _ in range(1)], axis=1)
lstm_states = (state, state)
lstm_states = th.tensor(lstm_states[0], dtype=th.float32), th.tensor(
lstm_states[1], dtype=th.float32
)
lstm_states_org = th.tensor(lstm_states[0], dtype=th.float32), th.tensor(
lstm_states[1], dtype=th.float32
)
for _ in generator:
with th.no_grad():
obs_trace = deepcopy(obs).astype(np.float32)
obs_trace, vectorized_env = model_trace.base_model.obs_to_tensor(obs_trace)
episode_start = th.tensor(episode_start, dtype=th.float32)
lstm_states = th.tensor(lstm_states[0], dtype=th.float32), th.tensor(
lstm_states[1], dtype=th.float32)
save_path = R"..\3_deploy\modelzoo\ppo_lstm\imodel"
if episode_start:
th.onnx.export(model_trace, (obs_trace, lstm_states,episode_start), save_path+"\\ppo_lstm_carracing_start.onnx", verbose=True)
else:
th.onnx.export(model_trace, (obs_trace, lstm_states,episode_start), save_path+"\\ppo_lstm_carracing_run.onnx", verbose=True)
print('Onnx model export success, saved in %s' % save_path)
ftmp_path = R"..\3_deploy\modelzoo\ppo_lstm\io\inputs"
obs_trace.numpy().astype(np.float32).tofile(ftmp_path + "\\encoder_input.ftmp")
lstm_states[0].numpy().astype(np.float32).tofile(ftmp_path + "\\lstm_states0.ftmp")
lstm_states[1].numpy().astype(np.float32).tofile(ftmp_path + "\\lstm_states1.ftmp")
print('Ftmp export success, saved in %s' % ftmp_path)
action_org, lstm_states_org = model.predict(
obs,
state=lstm_states_org,
episode_start=episode_start,
deterministic=deterministic,
)
obs, reward, done, infos = env.step(action_org)
episode_start = done
if not args.no_render:
env.render("human")
episode_reward += reward[0]
ep_len += 1
except KeyboardInterrupt:
pass
env.close()
if __name__ == "__main__":
enjoy()