mdz/pytorch/esanet/1_scripts/3_sim_infer.py

108 lines
3.6 KiB
Python

# -*- coding: utf-8 -*-
"""
lmy 2024-12-10 for esanet infer sunrgbd dataset
cd 1_script
run: python .\3_sim_infer.py --dataset sunrgbd
"""
from icraft.xir import *
from icraft.xrt import *
from icraft.host_backend import *
from icraft.buyibackend import *
from typing import List
import sys
sys.path.append(R"../0_esanet")
import argparse
from glob import glob
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from src.args import ArgumentParserRGBDSegmentation
from src.prepare_data import prepare_data
def run(network: Network, input: List[Tensor]) -> List[Tensor]:
session = Session.Create([ HostBackend], network.view(0), [HostDevice.Default()])
session.apply()
output_tensors = session.forward( input ) #前向
return output_tensors
GENERATED_JSON_FILE = "../3_deploy/modelzoo/esanet/imodel/8/esanet_BY.json"
GENERATED_RAW_FILE = "../3_deploy/modelzoo/esanet/imodel/8/esanet_BY.raw"
# 加载指令生成后的网络
generated_network = Network.CreateFromJsonFile(GENERATED_JSON_FILE)
generated_network.loadParamsFromFile(GENERATED_RAW_FILE)
def _load_img(fp):
img = cv2.imread(fp, cv2.IMREAD_UNCHANGED)
if img.ndim == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
if __name__ == "__main__":
parser = ArgumentParserRGBDSegmentation(
description='Efficient RGBD Indoor Sematic Segmentation (Inference)',formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.set_common_args()
parser.add_argument('--depth_scale', type=float,
default=1.0,
help='Additional depth scaling factor to apply.')
args = parser.parse_args()
# dataset
args.pretrained_on_imagenet = False # we are loading other weights anyway
dataset, preprocessor = prepare_data(args, with_input_orig=True)
n_classes = dataset.n_classes_without_void
# pre process
img_path=(R"../2_compile/qtset/sample/sample_rgb.png")
depth_path = (R"../2_compile/qtset/sample/sample_depth.png")
img_rgb = _load_img(img_path)
img_depth = _load_img(depth_path).astype('float32')
h, w, _ = img_rgb.shape
# preprocess sample
sample = preprocessor({'image': img_rgb, 'depth': img_depth})
# add batch axis and copy to device
image = sample['image'][None]
depth = sample['depth'][None]
input_0 = np.transpose(np.array(image).astype(np.float32), (0, 2, 3, 1))
input_1 = np.transpose(np.array(depth).astype(np.float32), (0, 2, 3, 1))
input_tensor_0 = Tensor(input_0, Layout("NHWC"))
input_tensor_1 = Tensor(input_1, Layout("NHWC"))
try:
generated_output = run(generated_network, [input_tensor_0,input_tensor_1])
except InternalError as i:
print(i)
print(np.array(generated_output[0]).shape)
# post process
pred = np.array(generated_output[0]).astype(np.float32)
pred = np.transpose(pred, (0, 3, 1, 2))
pred = torch.from_numpy(pred)
pred = F.interpolate(pred, (h, w),
mode='bilinear', align_corners=False)
pred = torch.argmax(pred, dim=1)
pred = pred.cpu().numpy().squeeze().astype(np.uint8)
# show result
pred_colored = dataset.color_label(pred, with_void=False)
fig, axs = plt.subplots(1, 3, figsize=(16, 3))
[ax.set_axis_off() for ax in axs.ravel()]
axs[0].imshow(img_rgb)
axs[1].imshow(img_depth, cmap='gray')
axs[2].imshow(pred_colored)
plt.suptitle(f"Image depth "f"Model: icraft")
plt.show()