mdz/pytorch/YOLOP/1_scripts/0_infer.py

227 lines
8.8 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import argparse
import os, sys
import shutil
import time
from pathlib import Path
import imageio
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)
print(sys.path)
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import scipy.special
import numpy as np
import torchvision.transforms as transforms
import PIL.Image as image
from lib.config import cfg
from lib.config import update_config
from lib.utils.utils import create_logger, select_device, time_synchronized
from lib.models import get_net
from lib.dataset import LoadImages, LoadStreams
from lib.core.general import non_max_suppression, scale_coords
from lib.utils import plot_one_box,show_seg_result
from lib.core.function import AverageMeter
from lib.core.postprocess import morphological_process, connect_lane
from tqdm import tqdm
from lib.dataset.DemoDataset import *
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
])
def new_next(self):
if self.count == self.nf:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
# Read video
self.mode = 'video'
ret_val, img0 = self.cap.read()
if not ret_val:
self.count += 1
self.cap.release()
if self.count == self.nf: # last video
raise StopIteration
else:
path = self.files[self.count]
self.new_video(path)
ret_val, img0 = self.cap.read()
h0, w0 = img0.shape[:2]
self.frame += 1
print('\n video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
else:
# Read image
self.count += 1
img0 = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) # BGR
img0 = cv2.cvtColor(img0, cv2.COLOR_BGR2RGB) #修改点1取消注释网络以rgb输入
assert img0 is not None, 'Image Not Found ' + path
print('image %g/%g %s: \n' % (self.count, self.nf, path), end='')
h0, w0 = img0.shape[:2]
# Padded resize
img, ratio, pad = letterbox_for_img(img0, new_shape=self.img_size, auto=False) #修改点2auto=True会minimum rectangle
h, w = img.shape[:2]
shapes = (h0, w0), ((h / h0, w / w0), pad)
# Convert
#img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
# cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
return path, img, img0, self.cap, shapes
LoadImages.__next__ = new_next
def detect(cfg,opt):
logger, _, _ = create_logger(
cfg, cfg.LOG_DIR, 'demo')
device = select_device(logger,opt.device)
if os.path.exists(opt.save_dir): # output dir
shutil.rmtree(opt.save_dir) # delete dir
os.makedirs(opt.save_dir) # make new dir
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = get_net(cfg)
checkpoint = torch.load(opt.weights, map_location= device)
model.load_state_dict(checkpoint['state_dict'])
model = model.to(device)
if half:
model.half() # to FP16
# Set Dataloader
if opt.source.isnumeric():
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(opt.source, img_size=opt.img_size)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(opt.source, img_size=opt.img_size)
bs = 1 # batch_size
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
t0 = time.time()
vid_path, vid_writer = None, None
img = torch.zeros((1, 3, opt.img_size, opt.img_size), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
model.eval()
inf_time = AverageMeter()
nms_time = AverageMeter()
for i, (path, img, img_det, vid_cap,shapes) in tqdm(enumerate(dataset),total = len(dataset)):
img = transform(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
det_out, da_seg_out,ll_seg_out= model(img)
t2 = time_synchronized()
# if i == 0:
# print(det_out)
inf_out, _ = det_out
inf_time.update(t2-t1,img.size(0))
# Apply NMS
t3 = time_synchronized()
det_pred = non_max_suppression(inf_out, conf_thres=opt.conf_thres, iou_thres=opt.iou_thres, classes=None, agnostic=False)
t4 = time_synchronized()
nms_time.update(t4-t3,img.size(0))
det=det_pred[0]
save_path = str(opt.save_dir +'/'+ Path(path).name) if dataset.mode != 'stream' else str(opt.save_dir + '/' + "web.mp4")
_, _, height, width = img.shape
h,w,_=img_det.shape
pad_w, pad_h = shapes[1][1]
pad_w = int(pad_w)
pad_h = int(pad_h)
ratio = shapes[1][0][1]
img_det = img_det[:,:,::-1]#RGB->BGR
da_predict = da_seg_out[:, :, pad_h:(height-pad_h),pad_w:(width-pad_w)]
da_seg_mask = torch.nn.functional.interpolate(da_predict, scale_factor=int(1/ratio), mode='bilinear')
_, da_seg_mask = torch.max(da_seg_mask, 1)
da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy()
# da_seg_mask = morphological_process(da_seg_mask, kernel_size=7)
ll_predict = ll_seg_out[:, :,pad_h:(height-pad_h),pad_w:(width-pad_w)]
ll_seg_mask = torch.nn.functional.interpolate(ll_predict, scale_factor=int(1/ratio), mode='bilinear')
_, ll_seg_mask = torch.max(ll_seg_mask, 1)
ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy()
# Lane line post-processing
#ll_seg_mask = morphological_process(ll_seg_mask, kernel_size=7, func_type=cv2.MORPH_OPEN)
#ll_seg_mask = connect_lane(ll_seg_mask)
img_det = show_seg_result(img_det, (da_seg_mask, ll_seg_mask), _, _, is_demo=True)
if len(det):
det[:,:4] = scale_coords(img.shape[2:],det[:,:4],img_det.shape).round()
for *xyxy,conf,cls in reversed(det):
label_det_pred = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=2)
if dataset.mode == 'images':
cv2.imwrite(save_path,img_det)
elif dataset.mode == 'video':
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
h,w,_=img_det.shape
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(img_det)
else:
cv2.imshow('image', img_det)
cv2.waitKey(1) # 1 millisecond
print('Results saved to %s' % Path(opt.save_dir))
print('Done. (%.3fs)' % (time.time() - t0))
print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='weights/End-to-end.pth', help='model.pth path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder ex:inference/images
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--save-dir', type=str, default='output/infer', help='directory to save results')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
opt = parser.parse_args()
with torch.no_grad():
detect(cfg,opt)