148 lines
4.8 KiB
Python
148 lines
4.8 KiB
Python
import sys
|
|
sys.path.append("../0_U2Net_det")
|
|
import os
|
|
from skimage import io, transform
|
|
import torch
|
|
from torch.autograd import Variable
|
|
from torch.utils.data import Dataset, DataLoader
|
|
from torchvision import transforms#, utils
|
|
# import torch.optim as optim
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
import glob
|
|
|
|
from data_loader import RescaleT
|
|
from data_loader import ToTensorLab
|
|
from data_loader import SalObjDataset
|
|
from model import U2NET # full size version 173.6 MB
|
|
from model.u2net import U2NET
|
|
import torch.nn.functional as F
|
|
|
|
RED = '\033[31m' # 设置前景色为红色
|
|
RESET = '\033[0m' # 重置所有属性到默认值
|
|
ver = torch.__version__
|
|
assert ("1.6" in ver) or ("1.9" in ver), f"{RED}Unsupported PyTorch version: {ver}{RESET}"
|
|
|
|
def _upsample_like(src,tar):
|
|
src = F.upsample(src,size=tar.shape[2:],mode='bilinear')
|
|
return src
|
|
|
|
def new_forward(self,x):
|
|
hx = x
|
|
#stage 1
|
|
hx1 = self.stage1(hx)
|
|
hx = self.pool12(hx1)
|
|
#stage 2
|
|
hx2 = self.stage2(hx)
|
|
hx = self.pool23(hx2)
|
|
#stage 3
|
|
hx3 = self.stage3(hx)
|
|
hx = self.pool34(hx3)
|
|
#stage 4
|
|
hx4 = self.stage4(hx)
|
|
hx = self.pool45(hx4)
|
|
#stage 5
|
|
hx5 = self.stage5(hx)
|
|
hx = self.pool56(hx5)
|
|
#stage 6
|
|
hx6 = self.stage6(hx)
|
|
hx6up = _upsample_like(hx6,hx5)
|
|
#-------------------- decoder --------------------
|
|
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
|
hx5dup = _upsample_like(hx5d,hx4)
|
|
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
|
hx4dup = _upsample_like(hx4d,hx3)
|
|
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
|
hx3dup = _upsample_like(hx3d,hx2)
|
|
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
|
hx2dup = _upsample_like(hx2d,hx1)
|
|
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
|
|
|
|
|
#side output
|
|
d1 = self.side1(hx1d)
|
|
d2 = self.side2(hx2d)
|
|
d2 = _upsample_like(d2,d1)
|
|
d3 = self.side3(hx3d)
|
|
d3 = _upsample_like(d3,d1)
|
|
d4 = self.side4(hx4d)
|
|
d4 = _upsample_like(d4,d1)
|
|
d5 = self.side5(hx5d)
|
|
d5 = _upsample_like(d5,d1)
|
|
d6 = self.side6(hx6)
|
|
d6 = _upsample_like(d6,d1)
|
|
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
|
#return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|
|
# 修改点:将多输出改为单输出
|
|
return F.sigmoid(d0)
|
|
|
|
|
|
# normalize the predicted SOD probability map
|
|
def normPRED(d):
|
|
ma = torch.max(d)
|
|
mi = torch.min(d)
|
|
dn = (d-mi)/(ma-mi)
|
|
return dn
|
|
|
|
def save_output(image_name,pred,d_dir):
|
|
predict = pred
|
|
predict = predict.squeeze()
|
|
predict_np = predict.cpu().data.numpy()
|
|
im = Image.fromarray(predict_np*255).convert('RGB')
|
|
img_name = image_name.split(os.sep)[-1]
|
|
image = io.imread(image_name)
|
|
imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR)
|
|
pb_np = np.array(imo)
|
|
aaa = img_name.split(".")
|
|
bbb = aaa[0:-1]
|
|
imidx = bbb[0]
|
|
for i in range(1,len(bbb)):
|
|
imidx = imidx + "." + bbb[i]
|
|
imo.save(d_dir+imidx+'.png')
|
|
|
|
def main():
|
|
# --------- 1. get image path and name ---------
|
|
model_name='u2net'
|
|
image_dir = '../0_U2Net_det/test_data/test_human_images'
|
|
model_dir = "../weights/u2net.pth"
|
|
export_dir = "../2_compile/fmodel"
|
|
export_name= "u2net_det_320x320_traced_new.pt"
|
|
if(not os.path.exists(export_dir)):
|
|
os.makedirs(export_dir)
|
|
img_name_list = glob.glob(image_dir + os.sep + '*')
|
|
|
|
# --------- 2. dataloader ---------
|
|
#1. dataloader
|
|
test_salobj_dataset = SalObjDataset(img_name_list = img_name_list,
|
|
lbl_name_list = [],
|
|
transform=transforms.Compose([RescaleT(320),
|
|
ToTensorLab(flag=0)])
|
|
)
|
|
test_salobj_dataloader = DataLoader(test_salobj_dataset,
|
|
batch_size=1,
|
|
shuffle=False,
|
|
num_workers=1)
|
|
|
|
# --------- 3. model define ---------
|
|
if(model_name=='u2net'):
|
|
print("...load U2NET---173.6 MB")
|
|
net = U2NET(3,1)
|
|
|
|
if torch.cuda.is_available():
|
|
net.load_state_dict(torch.load(model_dir))
|
|
net.cuda()
|
|
else:
|
|
net.load_state_dict(torch.load(model_dir, map_location='cpu'))
|
|
net.eval()
|
|
|
|
# export model
|
|
U2NET.__call__ = new_forward
|
|
input = torch.randn(1,3,320,320).cpu()
|
|
model_traced = torch.jit.trace(net, input)
|
|
model_traced.save(export_dir + "/"+ export_name)
|
|
print("traced model saved in ", export_dir+ "/"+ export_name)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|