50 lines
1.9 KiB
Python
50 lines
1.9 KiB
Python
import torch
|
|
import numpy as np
|
|
import sys
|
|
sys.path.append(R"../0_Res2Net")
|
|
import argparse
|
|
import functools
|
|
|
|
from macls.predict import MAClsPredictor
|
|
from macls.utils.utils import add_arguments, print_arguments
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
add_arg = functools.partial(add_arguments, argparser=parser)
|
|
|
|
add_arg('configs', str, 'configs/res2net.yml', '配置文件')
|
|
add_arg('audio_path', str, 'dataset/126153-9-0-11.wav', '音频路径')
|
|
add_arg('model_path', str, '../weights/Res2Net_Fbank/best_model/', '导出的预测模型文件路径')
|
|
add_arg('pt_path', str, '../2_compile/fmodel/Res2Net_predictor_1x398x80.pt', '导出的pt模型文件路径')
|
|
args = parser.parse_args()
|
|
print_arguments(args=args)
|
|
|
|
# 获取识别器
|
|
|
|
predictor = MAClsPredictor(configs=args.configs,
|
|
model_path=args.model_path,
|
|
use_gpu=False)
|
|
|
|
|
|
# 加载音频文件,并进行预处理
|
|
input_data = predictor._load_audio(audio_data=args.audio_path, sample_rate=16000)
|
|
input_data = torch.tensor(input_data.samples, dtype=torch.float32).unsqueeze(0)
|
|
print('input_data =',input_data.shape)
|
|
# 提取音频特征
|
|
audio_feature = predictor._audio_featurizer(input_data).to(torch.device("cpu"))
|
|
print('audio_feature =',audio_feature.shape)
|
|
# load pt model
|
|
model = torch.jit.load(args.pt_path)
|
|
# 执行预测
|
|
output = model(audio_feature)
|
|
print('output =',output,output.shape)
|
|
|
|
result = torch.nn.functional.softmax(output, dim=-1)[0]
|
|
result = result.data.cpu().numpy()
|
|
# 最大概率的label
|
|
lab = np.argsort(result)[-1]
|
|
score = result[lab]
|
|
CLASS_LABEL = ['air_conditioner', 'car_horn', 'children_playing', 'dog_bark', 'drilling', 'engine_idling', 'gun_shot', 'jackhammer', 'siren', 'street_music']
|
|
label = CLASS_LABEL[lab]
|
|
score = round(float(score), 5)
|
|
print(f'音频:{args.audio_path} 的预测结果标签为:{label},得分:{score}')
|