mdz/pytorch/PASSRnet/1_scripts/1_save.py

92 lines
3.9 KiB
Python

from models import *
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from utils import *
import argparse
import os
from torchvision import transforms
RED = '\033[31m' # 设置前景色为红色
RESET = '\033[0m' # 重置所有属性到默认值
ver = torch.__version__
assert ("1.6" in ver) or ("1.9" in ver), f"{RED}Unsupported PyTorch version: {ver}{RESET}"
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--testset_dir', type=str, default='data')
parser.add_argument('--dataset', type=str, default='test')
parser.add_argument('--scale_factor', type=int, default=4)
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--res', type=str, default='results')
parser.add_argument('--export_dir', type=str, default=R'../2_compile/fmodel/', help='save traced model path')
parser.add_argument('--lr_imgsz', nargs='+', type=int, default=[125,178], help='lr image size([h,w])')#不同输入图片尺寸不同,需要导出不同尺寸的模型
return parser.parse_args()
def new_forward(self, x_left, x_right):
### feature extraction
buffer_left = self.init_feature(x_left)
buffer_right = self.init_feature(x_right)
is_training=0
### parallax attention
buffer = self.pam(buffer_left, buffer_right, is_training)
### upscaling
out = self.upscale(buffer)
return out
def test(test_loader, cfg):
net = PASSRnet(cfg.scale_factor).to(cfg.device)
# cudnn.benchmark = True
pretrained_dict = torch.load('./log/x' + str(cfg.scale_factor) + '/PASSRnet_x' + str(cfg.scale_factor) + '.pth', map_location=torch.device('cpu'))
net.load_state_dict(pretrained_dict)
psnr_list = []
with torch.no_grad():
for idx_iter, (HR_left, _, LR_left, LR_right) in enumerate(test_loader):
HR_left, LR_left, LR_right = Variable(HR_left).to(cfg.device), Variable(LR_left).to(cfg.device), Variable(LR_right).to(cfg.device)
scene_name = test_loader.dataset.file_list[idx_iter]
#前向
# SR_left = net(LR_left, LR_right, is_training=0)
PASSRnet.forward = new_forward
#导模型
net.eval()
h,w = cfg.lr_imgsz[0],cfg.lr_imgsz[1]
a = torch.randn(1,3,h,w)
b = torch.randn(1,3,h,w)
tmodel = torch.jit.trace(net,(a,b))
fmodel_name = "PASSRnet_traced_1x3x{}x{}.pt".format(h,w)
fmodel_file = cfg.export_dir + fmodel_name
tmodel.save(fmodel_file)
print("successful traced model in ",fmodel_file)
break
SR_left = net(LR_left, LR_right)#LR_left.shape=[1, 3, 94, 310],LR_right.shape=[1, 3, 94, 310],不同图片size不同
SR_left = torch.clamp(SR_left, 0, 1)
psnr_list.append(cal_psnr(HR_left[:,:,:,64:], SR_left[:,:,:,64:]))#计算峰值信噪比
## save results
if not os.path.exists(cfg.res+cfg.dataset):
os.makedirs(cfg.res+cfg.dataset)
if not os.path.exists(cfg.res+cfg.dataset+'/'+scene_name):
os.makedirs(cfg.res+cfg.dataset+'/'+scene_name)
SR_left_img = transforms.ToPILImage()(torch.squeeze(SR_left.data.cpu(), 0))
SR_left_img.save(cfg.res+cfg.dataset+'/'+scene_name+'/img_0.png')
## print results
# print(cfg.dataset + ' mean psnr: ', float(np.array(psnr_list).mean()))
def main(cfg):
test_set = TestSetLoader(dataset_dir=cfg.testset_dir + '/' + cfg.dataset, scale_factor=cfg.scale_factor)
test_loader = DataLoader(dataset=test_set, num_workers=1, batch_size=1, shuffle=False)
if not os.path.exists(cfg.export_dir):
os.makedirs(cfg.export_dir)
result = test(test_loader, cfg)
return result
if __name__ == '__main__':
cfg = parse_args()
main(cfg)