mdz/pytorch/JL-DCF/2_compile/dump_qtset.py

45 lines
1.4 KiB
Python

import numpy as np
import pandas as pd
from numpy.linalg import norm
from typing import List
import platform
import cv2
import json
import os
from tqdm import tqdm
def Normalization(image):
in_ = image[:, :, ::-1]
# in_ = in_ / 255.0
# in_ -= np.array((0.485, 0.456, 0.406))
# in_ /= np.array((0.229, 0.224, 0.225))
in_ -= np.array((123.675, 116.28, 103.53))
in_ /= np.array((58.395, 57.12, 57.375))
return in_
def preprocess(im, image_size=(320, 320)):
in_ = np.array(im, dtype=np.float32)
in_ = cv2.resize(in_, image_size)
in_ = Normalization(in_)
return in_
img_dir = '../0_JL-DCF-pytorch-master/dataset/test/LFSD/RGB/'
dep_dir = '../0_JL-DCF-pytorch-master/dataset/test/LFSD/depth/'
img_list = sorted(os.listdir(img_dir))
dep_list = sorted(os.listdir(dep_dir))
for idx in range(len(img_list)):
print(idx)
img_path = img_dir + img_list[idx]
dep_path = dep_dir + dep_list[idx]
print(img_list[idx], dep_list[idx])
images = cv2.imread(img_path)
depth = cv2.imread(dep_path)
images = np.ascontiguousarray(preprocess(images).reshape(1, 320, 320, 3))
depth = np.ascontiguousarray(preprocess(depth).reshape(1, 320, 320, 3))
images.tofile('./icraft/qtset/{}_rgb.ftmp'.format(idx+1))
depth.tofile('./icraft/qtset/{}_depth.ftmp'.format(idx+1))
if idx == 15:
break