mdz/pytorch/HybridNets/1_scripts/2_save_infer.py

230 lines
11 KiB
Python

import torch
from torch.backends import cudnn
from backbone import HybridNetsBackbone
import cv2
import numpy as np
from glob import glob
from utils.utils import letterbox, scale_coords, postprocess, BBoxTransform, ClipBoxes, restricted_float, \
boolean_string, Params
from utils.plot import STANDARD_COLORS, standard_to_bgr, get_index_label, plot_one_box
import os
import onnx
import onnxruntime
from torchvision import transforms
import argparse
from utils.constants import *
def parse_args():
parser = argparse.ArgumentParser('HybridNets: End-to-End Perception Network - DatVu')
parser.add_argument('-p', '--project', type=str, default='bdd100k', help='Project file that contains parameters')
parser.add_argument('-bb', '--backbone', type=str, help='Use timm to create another backbone replacing efficientnet. '
'https://github.com/rwightman/pytorch-image-models')
parser.add_argument('-c', '--compound_coef', type=int, default=3, help='Coefficient of efficientnet backbone')
parser.add_argument('--source', type=str, default='demo/image', help='The demo image folder')
parser.add_argument('--output', type=str, default='demo_result/2_save_infer/', help='Output folder')
parser.add_argument('-w', '--load_weights',type=str, default="../weights/hybridnets.pth" )
parser.add_argument('--conf_thresh', type=restricted_float, default='0.25')
parser.add_argument('--iou_thresh', type=restricted_float, default='0.3')
parser.add_argument('--imshow', type=boolean_string, default=False, help="Show result onscreen (unusable on colab, jupyter...)")
parser.add_argument('--imwrite', type=boolean_string, default=True, help="Write result to output folder")
parser.add_argument('--show_det', type=boolean_string, default=False, help="Output detection result exclusively")
parser.add_argument('--show_seg', type=boolean_string, default=False, help="Output segmentation result exclusively")
parser.add_argument('--cuda', type=boolean_string, default=False)
parser.add_argument('--float16', type=boolean_string, default=True, help="Use float16 for faster inference")
parser.add_argument('--speed_test', type=boolean_string, default=False,
help='Measure inference latency')
parser.add_argument('--model_onnx', default='../2_compile/fmodel/HybridNets_1x3x384x640_traced.onnx', help='save the onnx model path')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
params = Params(f'projects/{args.project}.yml')
color_list_seg = {}
for seg_class in params.seg_list:
# edit your color here if you wanna fix to your liking
color_list_seg[seg_class] = list(np.random.choice(range(256), size=3))
compound_coef = args.compound_coef
source = args.source
if source.endswith("/"):
source = source[:-1]
output = args.output
if output.endswith("/"):
output = output[:-1]
weight = args.load_weights
img_path = glob(f'{source}/*.jpg') + glob(f'{source}/*.png')
# img_path = [img_path[0]] # demo with 1 image
input_imgs = []
shapes = []
det_only_imgs = []
anchors_ratios = params.anchors_ratios
anchors_scales = params.anchors_scales
threshold = args.conf_thresh
iou_threshold = args.iou_thresh
imshow = args.imshow
imwrite = args.imwrite
show_det = args.show_det
show_seg = args.show_seg
os.makedirs(output, exist_ok=True)
use_cuda = args.cuda
use_float16 = args.float16
cudnn.fastest = True
cudnn.benchmark = True
obj_list = params.obj_list
seg_list = params.seg_list
color_list = standard_to_bgr(STANDARD_COLORS)
ori_imgs = [cv2.imread(i, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) for i in img_path]
ori_imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in ori_imgs]
# print(f"FOUND {len(ori_imgs)} IMAGES")
# cv2.imwrite('ori.jpg', ori_imgs[0])
# cv2.imwrite('normalized.jpg', normalized_imgs[0]*255)
resized_shape = params.model['image_size'] #640
if isinstance(resized_shape, list):
resized_shape = max(resized_shape)
normalize = transforms.Normalize(
mean=params.mean, std=params.std
) # rgb img: mean=[0.485,0.456,0.406],std=[0.229, 0.224, 0.225]
transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
for ori_img in ori_imgs:
h0, w0 = ori_img.shape[:2] # orig hw
r = resized_shape / max(h0, w0) # resize image to img_size
input_img = cv2.resize(ori_img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_AREA)
h, w = input_img.shape[:2] # 360, 640
(input_img, _), ratio, pad = letterbox((input_img, None), resized_shape, auto=True,
scaleup=False) # 384,640
input_imgs.append(input_img)
# cv2.imwrite('input.jpg', input_img * 255)
shapes.append(((h0, w0), ((h / h0, w / w0), pad))) # for COCO mAP rescaling
if use_cuda:
x = torch.stack([transform(fi).cuda() for fi in input_imgs], 0)
else:
x = torch.stack([transform(fi) for fi in input_imgs], 0)
x = x.to(torch.float16 if use_cuda and use_float16 else torch.float32) #[6, 3, 384, 640]
# print(x.shape)
weight = torch.load(weight, map_location='cuda' if use_cuda else 'cpu')
#new_weight = OrderedDict((k[6:], v) for k, v in weight['model'].items())
weight_last_layer_seg = weight['segmentation_head.0.weight']
if weight_last_layer_seg.size(0) == 1:
seg_mode = BINARY_MODE
else:
if params.seg_multilabel:
seg_mode = MULTILABEL_MODE
else:
seg_mode = MULTICLASS_MODE
print("DETECTED SEGMENTATION MODE FROM WEIGHT AND PROJECT FILE:", seg_mode)
# load the model
model = onnx.load(args.model_onnx)
print("load model in ", args.model_onnx)
with torch.no_grad():
reg_list, cls_list, seg_list = [],[],[]
for i in range(len(ori_imgs)):
input = x[i].unsqueeze(0)
# run the onnx model
ort_session = onnxruntime.InferenceSession(args.model_onnx)
ort_inputs1 = ort_session.get_inputs()[0].name
ort_outs = ort_session.run(None, {ort_inputs1:input.numpy()})
reg_list.append(torch.tensor(ort_outs[0]))
cls_list.append(torch.tensor(ort_outs[1]))
seg_list.append(torch.tensor(ort_outs[2]))
regression = torch.concat(reg_list)
classification = torch.concat(cls_list)
seg = torch.concat(seg_list)
# in case of MULTILABEL_MODE, each segmentation class gets their own inference image
seg_mask_list = []
# (B, C, W, H) -> (B, W, H)
if seg_mode == BINARY_MODE:
seg_mask = torch.where(seg >= 0, 1, 0)
# print(torch.count_nonzero(seg_mask))
seg_mask.squeeze_(1)
seg_mask_list.append(seg_mask)
elif seg_mode == MULTICLASS_MODE:
_, seg_mask = torch.max(seg, 1)
seg_mask_list.append(seg_mask)
else:
seg_mask_list = [torch.where(torch.sigmoid(seg)[:, i, ...] >= 0.5, 1, 0) for i in range(seg.size(1))]
# but remove background class from the list
seg_mask_list.pop(0)
# (B, W, H) -> (W, H)
for i in range(seg.size(0)):
# print(i)
for seg_class_index, seg_mask in enumerate(seg_mask_list):
seg_mask_ = seg_mask[i].squeeze().cpu().numpy()
pad_h = int(shapes[i][1][1][1])
pad_w = int(shapes[i][1][1][0])
seg_mask_ = seg_mask_[pad_h:seg_mask_.shape[0]-pad_h, pad_w:seg_mask_.shape[1]-pad_w]
seg_mask_ = cv2.resize(seg_mask_, dsize=shapes[i][0][::-1], interpolation=cv2.INTER_NEAREST)
color_seg = np.zeros((seg_mask_.shape[0], seg_mask_.shape[1], 3), dtype=np.uint8)
for index, seg_class in enumerate(params.seg_list):
color_seg[seg_mask_ == index+1] = color_list_seg[seg_class]
color_seg = color_seg[..., ::-1] # RGB -> BGR
# cv2.imwrite('seg_only_{}.jpg'.format(i), color_seg)
color_mask = np.mean(color_seg, 2) # (H, W, C) -> (H, W), check if any pixel is not background
# prepare to show det on 2 different imgs
# (with and without seg) -> (full and det_only)
det_only_imgs.append(ori_imgs[i].copy())
seg_img = ori_imgs[i].copy() if seg_mode == MULTILABEL_MODE else ori_imgs[i] # do not work on original images if MULTILABEL_MODE
seg_img[color_mask != 0] = seg_img[color_mask != 0] * 0.5 + color_seg[color_mask != 0] * 0.5
seg_img = seg_img.astype(np.uint8)
seg_filename = f'{output}/{i}_{params.seg_list[seg_class_index]}_seg.jpg' if seg_mode == MULTILABEL_MODE else \
f'{output}/{i}_seg.jpg'
if show_seg or seg_mode == MULTILABEL_MODE:
cv2.imwrite(seg_filename, cv2.cvtColor(seg_img, cv2.COLOR_RGB2BGR))
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
# 加载本地anchor
anchors = torch.Tensor(np.fromfile(f'../1_scripts/anchors_384x640.ftmp',np.float32).reshape(1,46035,4))
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, iou_threshold)
for i in range(len(ori_imgs)):
out[i]['rois'] = scale_coords(ori_imgs[i][:2], out[i]['rois'], shapes[i][0], shapes[i][1])
for j in range(len(out[i]['rois'])):
x1, y1, x2, y2 = out[i]['rois'][j].astype(int)
obj = obj_list[out[i]['class_ids'][j]]
score = float(out[i]['scores'][j])
plot_one_box(ori_imgs[i], [x1, y1, x2, y2], label=obj, score=score,
color=color_list[get_index_label(obj, obj_list)])
if show_det:
plot_one_box(det_only_imgs[i], [x1, y1, x2, y2], label=obj, score=score,
color=color_list[get_index_label(obj, obj_list)])
if show_det:
cv2.imwrite(f'{output}/{i}_det.jpg', cv2.cvtColor(det_only_imgs[i], cv2.COLOR_RGB2BGR))
if imshow:
cv2.imshow('img', ori_imgs[i])
cv2.waitKey(0)
if imwrite:
cv2.imwrite(f'{output}/{i}.jpg', cv2.cvtColor(ori_imgs[i], cv2.COLOR_RGB2BGR))
print("results saved in: ",args.output)