mdz/pytorch/A2Net/2_compile/config/A2Net_8.toml

54 lines
1.7 KiB
TOML

[parse]
net_name = "A2Net"
framework = "onnx"
inputs = [[ 1, 256, 256, 3],[ 1, 256, 256, 3]]
inputs_layout = "NHWC;NHWC"
pre_method = "nop;nop"
pre_scale = [[ 58.395, 57.12, 57.375],[ 58.395, 57.12, 57.375]]
pre_mean = [[ 123.675, 116.28, 103.53],[ 123.675, 116.28, 103.53]]
channel_swap = [[0, 1, 2],[0, 1, 2]]
network = "./fmodel/A2Net_256x256_traced.onnx"
jr_path = "../3_deploy/modelzoo/A2Net/imodel/8/"
[optimize]
target = "BUYI"
json = "../3_deploy/modelzoo/A2Net/imodel/8/A2Net_parsed.json"
raw = "../3_deploy/modelzoo/A2Net/imodel/8/A2Net_parsed.raw"
jr_path = "../3_deploy/modelzoo/A2Net/imodel/8/"
[quantize]
forward_mode = "image"
saturation = "kld"
forward_dir = "./qtset/A2Net/"
forward_list = "./qtset/A2Net.txt"
bits = 8
json = "../3_deploy/modelzoo/A2Net/imodel/8/A2Net_optimized.json"
raw = "../3_deploy/modelzoo/A2Net/imodel/8/A2Net_optimized.raw"
jr_path = "../3_deploy/modelzoo/A2Net/imodel/8/"
per = "tensor"
target = "buyi"
[adapt]
target = "BUYI"
json = "../3_deploy/modelzoo/A2Net/imodel/8/A2Net_quantized.json"
raw = "../3_deploy/modelzoo/A2Net/imodel/8/A2Net_quantized.raw"
jr_path = "../3_deploy/modelzoo/A2Net/imodel/8/"
#pass_on = "customop.ImageMakePass"
#custom_config = "config/customop/A2Net.toml"
[generate]
json = "../3_deploy/modelzoo/A2Net/imodel/8/A2Net_adapted.json"
raw = "../3_deploy/modelzoo/A2Net/imodel/8/A2Net_adapted.raw"
jr_path = "../3_deploy/modelzoo/A2Net/imodel/8/"
log_path = "./logs/"
ocmopt = 3
[run]
log_time = true
log_io = true
dump_format = "SFB"
json = "../3_deploy/modelzoo/A2Net/imodel/8/A2Net_BY.json"
raw = "../3_deploy/modelzoo/A2Net/imodel/8/A2Net_BY.raw"
input = "./qtset/A2Net/test_2_0000_0000_A.png;./qtset/A2Net/test_2_0000_0000_B.png"
log_path = "./logs/"