AutoGPT/classic/benchmark/agbenchmark/reports/processing/graphs.py

200 lines
5.9 KiB
Python

from pathlib import Path
from typing import Any
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def save_combined_radar_chart(
categories: dict[str, Any], save_path: str | Path
) -> None:
categories = {k: v for k, v in categories.items() if v}
if not all(categories.values()):
raise Exception("No data to plot")
labels = np.array(
list(next(iter(categories.values())).keys())
) # We use the first category to get the keys
num_vars = len(labels)
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
angles += angles[
:1
] # Add the first angle to the end of the list to ensure the polygon is closed
# Create radar chart
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
ax.set_theta_offset(np.pi / 2) # type: ignore
ax.set_theta_direction(-1) # type: ignore
ax.spines["polar"].set_visible(False) # Remove border
cmap = plt.cm.get_cmap("nipy_spectral", len(categories)) # type: ignore
colors = [cmap(i) for i in range(len(categories))]
for i, (cat_name, cat_values) in enumerate(
categories.items()
): # Iterating through each category (series)
values = np.array(list(cat_values.values()))
values = np.concatenate((values, values[:1])) # Ensure the polygon is closed
ax.fill(angles, values, color=colors[i], alpha=0.25) # Draw the filled polygon
ax.plot(angles, values, color=colors[i], linewidth=2) # Draw polygon
ax.plot(
angles,
values,
"o",
color="white",
markersize=7,
markeredgecolor=colors[i],
markeredgewidth=2,
) # Draw points
# Draw legend
ax.legend(
handles=[
mpatches.Patch(color=color, label=cat_name, alpha=0.25)
for cat_name, color in zip(categories.keys(), colors)
],
loc="upper left",
bbox_to_anchor=(0.7, 1.3),
)
# Adjust layout to make room for the legend
plt.tight_layout()
lines, labels = plt.thetagrids(
np.degrees(angles[:-1]), (list(next(iter(categories.values())).keys()))
) # We use the first category to get the keys
highest_score = 7
# Set y-axis limit to 7
ax.set_ylim(top=highest_score)
# Move labels away from the plot
for label in labels:
label.set_position(
(label.get_position()[0], label.get_position()[1] + -0.05)
) # adjust 0.1 as needed
# Move radial labels away from the plot
ax.set_rlabel_position(180) # type: ignore
ax.set_yticks([]) # Remove default yticks
# Manually create gridlines
for y in np.arange(0, highest_score + 1, 1):
if y != highest_score:
ax.plot(
angles, [y] * len(angles), color="gray", linewidth=0.5, linestyle=":"
)
# Add labels for manually created gridlines
ax.text(
angles[0],
y + 0.2,
str(int(y)),
color="black",
size=9,
horizontalalignment="center",
verticalalignment="center",
)
plt.savefig(save_path, dpi=300) # Save the figure as a PNG file
plt.close() # Close the figure to free up memory
def save_single_radar_chart(
category_dict: dict[str, int], save_path: str | Path
) -> None:
labels = np.array(list(category_dict.keys()))
values = np.array(list(category_dict.values()))
num_vars = len(labels)
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
angles += angles[:1]
values = np.concatenate((values, values[:1]))
colors = ["#1f77b4"]
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
ax.set_theta_offset(np.pi / 2) # type: ignore
ax.set_theta_direction(-1) # type: ignore
ax.spines["polar"].set_visible(False)
lines, labels = plt.thetagrids(
np.degrees(angles[:-1]), (list(category_dict.keys()))
)
highest_score = 7
# Set y-axis limit to 7
ax.set_ylim(top=highest_score)
for label in labels:
label.set_position((label.get_position()[0], label.get_position()[1] + -0.05))
ax.fill(angles, values, color=colors[0], alpha=0.25)
ax.plot(angles, values, color=colors[0], linewidth=2)
for i, (angle, value) in enumerate(zip(angles, values)):
ha = "left"
if angle in {0, np.pi}:
ha = "center"
elif np.pi < angle < 2 * np.pi:
ha = "right"
ax.text(
angle,
value - 0.5,
f"{value}",
size=10,
horizontalalignment=ha,
verticalalignment="center",
color="black",
)
ax.set_yticklabels([])
ax.set_yticks([])
if values.size == 0:
return
for y in np.arange(0, highest_score, 1):
ax.plot(angles, [y] * len(angles), color="gray", linewidth=0.5, linestyle=":")
for angle, value in zip(angles, values):
ax.plot(
angle,
value,
"o",
color="white",
markersize=7,
markeredgecolor=colors[0],
markeredgewidth=2,
)
plt.savefig(save_path, dpi=300) # Save the figure as a PNG file
plt.close() # Close the figure to free up memory
def save_combined_bar_chart(categories: dict[str, Any], save_path: str | Path) -> None:
if not all(categories.values()):
raise Exception("No data to plot")
# Convert dictionary to DataFrame
df = pd.DataFrame(categories)
# Create a grouped bar chart
df.plot(kind="bar", figsize=(10, 7))
plt.title("Performance by Category for Each Agent")
plt.xlabel("Category")
plt.ylabel("Performance")
plt.savefig(save_path, dpi=300) # Save the figure as a PNG file
plt.close() # Close the figure to free up memory