AutoGPT/classic/original_autogpt/autogpt/app/config.py

224 lines
7.9 KiB
Python

"""Configuration class to store the state of bools for different scripts access."""
from __future__ import annotations
import logging
import os
import re
from pathlib import Path
from typing import Optional, Union
import forge
from forge.config.base import BaseConfig
from forge.llm.providers import CHAT_MODELS, ModelName
from forge.llm.providers.openai import OpenAICredentials, OpenAIModelName
from forge.logging.config import LoggingConfig
from forge.models.config import Configurable, UserConfigurable
from pydantic import SecretStr, ValidationInfo, field_validator
logger = logging.getLogger(__name__)
PROJECT_ROOT = Path(forge.__file__).parent.parent
AZURE_CONFIG_FILE = Path("azure.yaml")
GPT_4_MODEL = OpenAIModelName.GPT4
GPT_3_MODEL = OpenAIModelName.GPT3
class AppConfig(BaseConfig):
name: str = "Auto-GPT configuration"
description: str = "Default configuration for the Auto-GPT application."
########################
# Application Settings #
########################
project_root: Path = PROJECT_ROOT
app_data_dir: Path = project_root / "data"
skip_news: bool = False
skip_reprompt: bool = False
authorise_key: str = UserConfigurable(default="y", from_env="AUTHORISE_COMMAND_KEY")
exit_key: str = UserConfigurable(default="n", from_env="EXIT_KEY")
noninteractive_mode: bool = False
logging: LoggingConfig = LoggingConfig()
component_config_file: Optional[Path] = UserConfigurable(
default=None, from_env="COMPONENT_CONFIG_FILE"
)
##########################
# Agent Control Settings #
##########################
# Model configuration
fast_llm: ModelName = UserConfigurable(
default=OpenAIModelName.GPT3,
from_env="FAST_LLM",
)
smart_llm: ModelName = UserConfigurable(
default=OpenAIModelName.GPT4_TURBO,
from_env="SMART_LLM",
)
temperature: float = UserConfigurable(default=0, from_env="TEMPERATURE")
openai_functions: bool = UserConfigurable(
default=False, from_env=lambda: os.getenv("OPENAI_FUNCTIONS", "False") == "True"
)
embedding_model: str = UserConfigurable(
default="text-embedding-3-small", from_env="EMBEDDING_MODEL"
)
# Run loop configuration
continuous_mode: bool = False
continuous_limit: int = 0
############
# Commands #
############
# General
disabled_commands: list[str] = UserConfigurable(
default_factory=list,
from_env=lambda: _safe_split(os.getenv("DISABLED_COMMANDS")),
)
# File ops
restrict_to_workspace: bool = UserConfigurable(
default=True,
from_env=lambda: os.getenv("RESTRICT_TO_WORKSPACE", "True") == "True",
)
###############
# Credentials #
###############
# OpenAI
openai_credentials: Optional[OpenAICredentials] = None
azure_config_file: Optional[Path] = UserConfigurable(
default=AZURE_CONFIG_FILE, from_env="AZURE_CONFIG_FILE"
)
@field_validator("openai_functions")
def validate_openai_functions(cls, value: bool, info: ValidationInfo):
if value:
smart_llm = info.data["smart_llm"]
assert CHAT_MODELS[smart_llm].has_function_call_api, (
f"Model {smart_llm} does not support tool calling. "
"Please disable OPENAI_FUNCTIONS or choose a suitable model."
)
return value
class ConfigBuilder(Configurable[AppConfig]):
default_settings = AppConfig()
@classmethod
def build_config_from_env(cls, project_root: Path = PROJECT_ROOT) -> AppConfig:
"""Initialize the Config class"""
config = cls.build_agent_configuration()
config.project_root = project_root
# Make relative paths absolute
for k in {
"azure_config_file", # TODO: move from project root
}:
setattr(config, k, project_root / getattr(config, k))
if (
config.openai_credentials
and config.openai_credentials.api_type == SecretStr("azure")
and (config_file := config.azure_config_file)
):
config.openai_credentials.load_azure_config(config_file)
return config
async def assert_config_has_required_llm_api_keys(config: AppConfig) -> None:
"""
Check if API keys (if required) are set for the configured SMART_LLM and FAST_LLM.
"""
from forge.llm.providers.anthropic import AnthropicModelName
from forge.llm.providers.groq import GroqModelName
from pydantic import ValidationError
if set((config.smart_llm, config.fast_llm)).intersection(AnthropicModelName):
from forge.llm.providers.anthropic import AnthropicCredentials
try:
credentials = AnthropicCredentials.from_env()
except ValidationError as e:
if "api_key" in str(e):
logger.error(
"Set your Anthropic API key in .env or as an environment variable"
)
logger.info(
"For further instructions: "
"https://docs.agpt.co/classic/original_autogpt/setup/#anthropic"
)
raise ValueError("Anthropic is unavailable: can't load credentials") from e
key_pattern = r"^sk-ant-api03-[\w\-]{95}"
# If key is set, but it looks invalid
if not re.search(key_pattern, credentials.api_key.get_secret_value()):
logger.warning(
"Possibly invalid Anthropic API key! "
f"Configured Anthropic API key does not match pattern '{key_pattern}'. "
"If this is a valid key, please report this warning to the maintainers."
)
if set((config.smart_llm, config.fast_llm)).intersection(GroqModelName):
from forge.llm.providers.groq import GroqProvider
from groq import AuthenticationError
try:
groq = GroqProvider()
await groq.get_available_models()
except ValidationError as e:
if "api_key" not in str(e):
raise
logger.error("Set your Groq API key in .env or as an environment variable")
logger.info(
"For further instructions: "
+ "https://docs.agpt.co/classic/original_autogpt/setup/#groq"
)
raise ValueError("Groq is unavailable: can't load credentials")
except AuthenticationError as e:
logger.error("The Groq API key is invalid!")
logger.info(
"For instructions to get and set a new API key: "
"https://docs.agpt.co/classic/original_autogpt/setup/#groq"
)
raise ValueError("Groq is unavailable: invalid API key") from e
if set((config.smart_llm, config.fast_llm)).intersection(OpenAIModelName):
from forge.llm.providers.openai import OpenAIProvider
from openai import AuthenticationError
try:
openai = OpenAIProvider()
await openai.get_available_models()
except ValidationError as e:
if "api_key" not in str(e):
raise
logger.error(
"Set your OpenAI API key in .env or as an environment variable"
)
logger.info(
"For further instructions: "
+ "https://docs.agpt.co/classic/original_autogpt/setup/#openai"
)
raise ValueError("OpenAI is unavailable: can't load credentials")
except AuthenticationError as e:
logger.error("The OpenAI API key is invalid!")
logger.info(
"For instructions to get and set a new API key: "
"https://docs.agpt.co/classic/original_autogpt/setup/#openai"
)
raise ValueError("OpenAI is unavailable: invalid API key") from e
def _safe_split(s: Union[str, None], sep: str = ",") -> list[str]:
"""Split a string by a separator. Return an empty list if the string is None."""
if s is None:
return []
return s.split(sep)